Electrochemical determination of trace sulfur containing compounds in model fuel based on a silver/polyaniline-modified electrode

2020 ◽  
Vol 12 (8) ◽  
pp. 1094-1106 ◽  
Author(s):  
Siyabonga Shoba ◽  
Owolabi M. Bankole ◽  
Adeniyi S. Ogunlaja

Prepared GCE/PAni/Ag characterized via spectroscopic techniques (UV-Vis, XRD, XPS) and microscopic techniques (TEM and SEM), was employed for the quantification of benzothiophene, dibenzothiophene and 4,6-dimethyldibenzothiophene in model fuel.

Author(s):  
Pedro Borges ◽  
Edson Nossol

Reduced graphene oxide/ruthenium oxide hexacyanoferrate (rGO/RuOHCF) modified electrode showed synergic activity between the materials attested by the increase of electrochemical current and stability. The preparation of the nanocomposite was made by a simple two-step electrochemical approach. The material structure was characterized by spectroscopic techniques (Raman, infrared and energy-dispersive X-ray) as well as its morphology by scanning electron microscopy and compared to the analogously prepared reduced graphene oxide (rGO) and ruthenium oxide hexacyanoferrate (RuOHCF) thin films spectra and images. The results suggest that the improvement of the nanocomposite electrochemical activity is generated by the well-distributed RuOHCF nanometric particles over high-surfaced graphene sheets. Ethanol electrochemical oxidation in the rGO/RuOHCF modified electrode was performed in 0.1 mol L-1 NaCl (pH = 1.5) solution and it showed an anodic current peak starting at 0.9 V. Scan rate tests exhibited a diffusioncontrolled process not followed by any coupled chemical reaction. The determination of ethanol by amperometry coupled with batch injection analysis (BIA) system resulted in a wide linear range (20-400 mmol L-1) and good sensitivity (0.150 μA L mmol-1). The nanocomposite also showed application as an electrochemical sensor of ethanol in commercial samples mainly because of its easy preparation comparing to biosensors.


2015 ◽  
Vol 80 (9) ◽  
pp. 1161-1175 ◽  
Author(s):  
Bikila Olana ◽  
Shimeles Kitte ◽  
Tesfaye Soreta

In this work the determination of ascorbic acid (AA) at glassy carbon electrode (GCE) modified with a perforated film produced by reduction of diazonium generated in situ from p-phenylenediamine (PD) is reported. Holes were intentionally created in the modifier film by stripping a pre-deposited gold nanoparticles. The modified electrodes were electrochemically characterized by common redox probes: hydroquinone, ferrocyanide and hexamineruthenium(III). The cyclic voltammetric and amperometric response of AA using the modified electrodes was compared with that of bare GCE. The bare GCE showed a linear response to AA in the concentration range of 5 mM to 45 mM with detection limit of 1.656 mM and the modified GCE showed a linear response to AA in the concentration range of 5 ?M to 45 ?M with detection limit of 0.123 ?M. The effect of potential intereferents on amperometric signal of AA at the modified GCE was examined and found to be minimal. The inter-electrode reproducibility, stability, and accuracy were determined. The modified electrode showed excellent inter-electrode reproducibility, accuracy and stability. The modified electrode reported is a promising candidate for use in electroanalysis of AA.


Sign in / Sign up

Export Citation Format

Share Document