Rapid additive-free bacteria lysis using traveling surface acoustic waves in microfluidic channels

Lab on a Chip ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 4064-4070 ◽  
Author(s):  
Haiwei Lu ◽  
Kirk Mutafopulos ◽  
John A. Heyman ◽  
Pascal Spink ◽  
Liang Shen ◽  
...  

We introduce a microfluidic device that uses traveling surface acoustic waves to lyse bacteria with high efficiency. This lysis method should be applicable to a wide range of bacteria species and can be modified to analyze individual bacteria cells.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
R. W. Rambach ◽  
J. Taiber ◽  
C. M. L. Scheck ◽  
C. Meyer ◽  
J. Reboud ◽  
...  

Abstract We demonstrate that the propagation path of a surface acoustic wave (SAW), excited with an interdigitated transducer (IDT), can be visualized using a thin liquid film dispensed onto a lithium niobate (LiNbO3) substrate. The practical advantages of this visualization method are its rapid and simple implementation, with many potential applications including in characterising acoustic pumping within microfluidic channels. It also enables low-cost characterisation of IDT designs thereby allowing the determination of anisotropy and orientation of the piezoelectric substrate without the requirement for sophisticated and expensive equipment. Here, we show that the optical visibility of the sound path critically depends on the physical properties of the liquid film and identify heptane and methanol as most contrast rich solvents for visualization of SAW. We also provide a detailed theoretical description of this effect.



2020 ◽  
Vol 53 (35) ◽  
pp. 355402 ◽  
Author(s):  
Jie Li ◽  
Mehdi H Biroun ◽  
Ran Tao ◽  
Yong Wang ◽  
Hamdi Torun ◽  
...  


Author(s):  
Saeed Mohammadi ◽  
Abdelkrim Khelif ◽  
Ryan Westafer ◽  
Eric Massey ◽  
William D. Hunt ◽  
...  

Periodic elastic structures, called phononic crystals, show interesting frequency domain characteristics that can greatly influence the performance of acoustic and ultrasonic devices for several applications. Phononic crystals are acoustic counterparts of the extensively-investigated photonic crystals that are made by varying material properties periodically. Here we demonstrate the existence of phononic band-gaps for surface acoustic waves (SAWs) in a half-space of two dimensional phononic crystals consisting of hexagonal (honeycomb) arrangement of air cylinders in a crystalline Silicon background with low filling fraction. A theoretical calculation of band structure for bulk wave using finite element method is also achieved and shows that there is no complete phononic band gap in the case of the low filling fraction. Fabrication of the holes in Silicon is done by optical lithography and deep Silicon dry etching. In the experimental characterization, we have used slanted finger interdigitated transducers deposited on a thin layer of Zinc oxide (sputtered on top of the phononic crystal structure to excite elastic surface waves in Silicon) to cover a wide range of frequencies. We believe this to be the first reported demonstration of phononic band-gap for SAWs in a hexagonal lattice phononic crystal at such a high frequency.



Lab on a Chip ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 3914-3921
Author(s):  
Kirk Mutafopulos ◽  
Peter J. Lu ◽  
Ryan Garry ◽  
Pascal Spink ◽  
David A. Weitz

We generate traveling surface acoustic waves with an interdigital transducer to create droplets on-demand; encapsulate single cells; lyse cells and immediately encapsulate their contents; and pico-inject new materials into existing droplets.





2010 ◽  
Vol 87 (5-8) ◽  
pp. 1204-1206 ◽  
Author(s):  
Q. Zeng ◽  
H.W.L. Chan ◽  
X.Z. Zhao ◽  
Y. Chen


2020 ◽  
Vol 11 ◽  
pp. 117959722094143
Author(s):  
Dilshan Sooriyaarachchi ◽  
Shahrima Maharubin ◽  
George Z Tan

The integration of nanomaterials in microfluidic devices has emerged as a new research paradigm. Microfluidic devices composed of ZnO nanowires have been developed for the collection of urine extracellular vesicles (EVs) at high efficiency and in situ extraction of various microRNAs (miRNAs). The devices can be used for diagnosing various diseases, including kidney diseases and cancers. A major research need for developing micro total analysis systems is to enhance extraction efficiency. This article presents a novel fabrication method for a herringbone-patterned microfluidic device anchored with ZnO nanowire arrays. The substrates with herringbone patterns were created by maskless photolithography. The ZnO nanowire arrays were grown on the substrates by chemical bathing. The patterned design was to introduce turbulent flows as opposed to laminar flow in traditional devices to increase the mixing and contact of the urine sample with ZnO nanowires. The device showed reduced flow rates compared with conventional planar microfluidic channels and successfully extracted urine EV-encapsulated miRNAs.





Sign in / Sign up

Export Citation Format

Share Document