Heterobimetallic Ru(ii)/Fe(ii) complexes as potent anticancer agents against breast cancer cells, inducing apoptosis through multiple targets

Metallomics ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 547-561 ◽  
Author(s):  
Adriana Pereira Mundim Guedes ◽  
Francyelli Mello-Andrade ◽  
Wanessa Carvalho Pires ◽  
Maria Alice Montes de Sousa ◽  
Paula Francinete Faustino da Silva ◽  
...  

Antimetastatic activity, high selectivity and cytotoxicity for human tumor cell lines make ruthenium(ii) complexes attractive for the development of new chemotherapeutic agents for cancer treatment.

1996 ◽  
Vol 14 (4) ◽  
Author(s):  
Tatsuya Takagi ◽  
Yasuo Yazawa ◽  
Kenichi Suzuki ◽  
Yasuo Yamauchi ◽  
Yasuhiko Kano

2019 ◽  
Vol 16 (2) ◽  
pp. 294-302 ◽  
Author(s):  
Hui Gao ◽  
Bei Liu ◽  
Ping Zhu ◽  
Li-Jun Zhang ◽  
Chun-Ping Wan ◽  
...  

Aim and Objective: Isoxazolines are an important class of nitrogen and oxygen-containing heterocycles, which have gained much importance as the potential biological agents. In order to study structureactivity relationships of isoxazolines, this work has been conducted. Materials and Methods: A series of new piperazine substituted 3, 5-diarylisoxazoline derivatives (6-31) were designed and synthesized, and in vitro anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated RAW-264.7 macrophages and anticancer effect against a panel of human tumor cell lines (Hela, A549 and SGC7901) by MTT assay were evaluated. Results: The substituents of the NH group of piperazine ring had an obvious influence on biological activities. Especially, compounds 5, 7, 8, 10, 11, 13 and 27-showed good inhibitory effect on the generation of NO compared to dexamethasone. Furthermore, derivatives 5, 6, 7, 8, 9, 13 and 26 were found to be potential selectively anticancer activity on human tumor cell lines, which displayed better cytotoxic activity to positive control 5- FU. Conclusion: Piperazine substituted 3, 5-diarylisoxazoline derivatives could be considered as new antiinflammatory and anticancer agents.


2016 ◽  
Vol 66 (1) ◽  
pp. 129-137 ◽  
Author(s):  
Paulo H. B. França ◽  
Edeildo F. Da Silva-Júnior ◽  
Pedro G. V. Aquino ◽  
Antônio E. G. Santana ◽  
Jamylle N. S. Ferro ◽  
...  

Abstract Guanylhydrazones have shown promising antitumor activity in preclinical tumor models in several studies. In this study, we aimed at evaluating the cytotoxic effect of a series of synthetic guanylhydrazones. Different human tumor cell lines, by including HCT-8 (colon carcinoma), MDA-MB-435 (melanoma) and SF-295 (glioblastoma) were continuous exposed to guanylhydrazone derivatives for 72 hours and growth inhibition of tumor cell lines and macrophages J774 was measured using tetrazolium salt (MTT) assay. Compounds 7, 11, 16 and 17 showed strong cytotoxic activity with IC50 values lower than 10 μmol L−1 against four tumor cell lines. Among them, 7 was less toxic to non-tumor cells. Finally, obtained data suggest that guanylhydrazones may be regarded as potential lead compounds for the design of novel anticancer agents.


Author(s):  
Chris van Bree ◽  
Natasja Castro Kreder ◽  
Willem J.P Loves ◽  
Nicolaas A.P Franken ◽  
Godefridus J Peters ◽  
...  

Molecules ◽  
2018 ◽  
Vol 23 (8) ◽  
pp. 1956 ◽  
Author(s):  
Leydi Moreno ◽  
Jairo Quiroga ◽  
Rodrigo Abonia ◽  
Jonathan Ramírez-Prada ◽  
Braulio Insuasty

A new series of 1,3,5-triazine-containing 2-pyrazoline derivatives (8–11)a–g was synthesized by cyclocondensation reactions of [(4,6-bis((2-hydroxyethyl)amino)-1,3,5-triazin-2-yl)amine]chalcones 7a–g with hydrazine hydrate and derivatives. Chalcones 7a–g were obtained by Claisen-Schmidt condensation between aromatic aldehydes and triazinic derivative 5, which was synthesized in high yield by a microwave-assisted reaction. Seventeen of the synthesized compounds were selected and tested by the US National Cancer Institute (NCI) for their anticancer activity against 58 different human tumor cell lines. Compounds 7g and 10d,e,g showed important GI50 values ranging from 0.569 to 16.6 µM and LC50 values ranging from 5.15 to >100 µM.


1989 ◽  
Vol 1 (6) ◽  
pp. 359-365 ◽  
Author(s):  
Richard D. H. Whelan ◽  
Louise K. Hosking ◽  
Alan J. Townsend ◽  
Kenneth H. Cowan ◽  
Bridget T. Hill

2020 ◽  
Vol 17 (4) ◽  
pp. 512-517
Author(s):  
Ognyan Ivanov Petrov ◽  
Yordanka Borisova Ivanova ◽  
Mariana Stefanova Gerova ◽  
Georgi Tsvetanov Momekov

Background: Chemotherapy is one of the mainstays of cancer treatment, despite the serious side effects of the clinically available anticancer drugs. In recent years increasing attention has been directed towards novel agents with improved efficacy and selectivity. Compounds with chalcone backbone have been reported to possess various biological activities such as anticancer, antimicrobial, anti-inflammatory, analgesic, antioxidant, etc. It was reported that aminomethylation of hydroxy chalcones to the corresponding Mannich bases increased their cytotoxicity. In this context, our interest has been focused on the design and synthesis of the so-called multi-target molecules, containing two or more pharmacophore fragments. Methods: A series of Mannich bases were synthesized by the reaction between 6-[3-(3,4,5- trimethoxyphenyl)-2-propenoyl]-2(3Н)-benzoxazolone, formaldehyde, and a secondary amine. The structures of the compounds were confirmed by elemental analysis, IR and NMR spectra. The new Mannich bases were evaluated for their in vitro cytotoxicity against a panel of human tumor cell lines, including BV-173, SKW-3, K-562, HL-60, HD-MY-Z and MDA-MB-231. The effects of selected compounds on the cellular levels of glutathione (GSH) were determined. Results: The new compounds 4a-e exhibited concentration-dependent cytotoxic effects at micromolar concentrations in MTT-dye reduction assay against a panel of human tumor cell lines, similar to those of starting chalcone 3. The tested agents led to concentration - dependent depletion of cellular GSH levels, whereby the effects of the chalcone prototype 3 and its Mannich base-derivatives were comparable. Conclusion: The highest chemosensitivity to the tested compounds was observed in BV- 173followed by SKW-3 and HL-60 cell lines.


Sign in / Sign up

Export Citation Format

Share Document