nci60 panel
Recently Published Documents


TOTAL DOCUMENTS

10
(FIVE YEARS 4)

H-INDEX

5
(FIVE YEARS 1)

Author(s):  
Sumaiah S. Al-Asmari ◽  
Aleksandra Rajapakse ◽  
Tomalika R. Ullah ◽  
Geneviève Pépin ◽  
Laura V. Croft ◽  
...  

Activation of the STING pathway upon genotoxic treatment of cancer cells has been shown to lead to anti-tumoral effects, mediated through the acute production of interferon (IFN)-β. Conversely, the pathway also correlates with the expression of NF-κB-driven pro-tumorigenic genes, but these associations are only poorly defined in the context of genotoxic treatment, and are thought to correlate with a chronic engagement of the pathway. We demonstrate here that half of the STING-expressing cancer cells from the NCI60 panel rapidly increased expression of pro-tumorigenic IL-6 upon genotoxic DNA damage, often independent of type-I IFN responses. While preferentially dependent on canonical STING, we demonstrate that genotoxic DNA damage induced by camptothecin (CPT) also drove IL-6 production through non-canonical STING signaling in selected cancer cells. Consequently, pharmacological inhibition of canonical STING failed to broadly inhibit IL-6 production induced by CPT, although this could be achieved through downstream ERK1/2 inhibition. Finally, prolonged inhibition of canonical STING signaling was associated with increased colony formation of MG-63 cells, highlighting the duality of STING signaling in also restraining the growth of selected cancer cells. Collectively, our findings demonstrate that genotoxic-induced DNA damage frequently leads to the rapid production of pro-tumorigenic IL-6 in cancer cells, independent of an IFN signature, through canonical and non-canonical STING activation; this underlines the complexity of STING engagement in human cancer cells, with frequent acute pro-tumorigenic activities induced by DNA damage. We propose that inhibition of ERK1/2 may help curb such pro-tumorigenic responses to DNA-damage, while preserving the anti-proliferative effects of the STING-interferon axis.


Author(s):  
Dale Tranter ◽  
Anja Paatero ◽  
Shinsaku Kawaguchi ◽  
Soheila Kazemi ◽  
Jeffrey D. Serrill ◽  
...  

Coibamide A (CbA) is a marine natural product with potent antiproliferative activity against human cancer cells and a unique selectivity profile. Despite promising antitumor activity, the mechanism of cytotoxicity and specific cellular target remain unknown. Here, we develop an optimized synthetic CbA photoaffinity probe (photo-CbA) and use it to demonstrate that CbA directly targets the Sec61α subunit of the trimeric Sec61 translocon. CbA binding to Sec61 results in broad substrate-nonselective inhibition of ER protein import and potent cytotoxicity against specific cancer cell lines. CbA targets a lumenal cavity of Sec61α that is partially shared with known Sec61 inhibitors, yet profiling against resistance conferring Sec61α mutations identified from human HCT116 cells suggests a distinct binding mode for CbA. Specifically, despite conferring strong resistance to all previously known Sec61 inhibitors, the Sec61α mutant R66I remains sensitive to CbA. A further unbiased screen for Sec61α resistance mutations identified the CbA-resistant mutation S71P, which confirms non-identical binding sites for CbA and apratoxin A and supports the susceptibility of the Sec61 plug region for channel inhibition. Remarkably, CbA, apratoxin A andipomoeassin F do not display comparable patterns of potency and selectivity in the NCI60 panel of human cancer cell lines.Our work connecting CbA activity with selective prevention of secretory and membrane protein biogenesis by inhibition of Sec61 opens up possibilities for developing new Sec61 inhibitors with improved drug-like properties that are based on the coibamide pharmacophore.


Author(s):  
Dale Tranter ◽  
Anja Paatero ◽  
Shinsaku Kawaguchi ◽  
Soheila Kazemi ◽  
Jeffrey D. Serrill ◽  
...  

Coibamide A (CbA) is a marine natural product with potent antiproliferative activity against human cancer cells and a unique selectivity profile. Despite promising antitumor activity, the mechanism of cytotoxicity and specific cellular target remain unknown. Here, we develop an optimized synthetic CbA photoaffinity probe (photo-CbA) and use it to demonstrate that CbA directly targets the Sec61α subunit of the trimeric Sec61 translocon. CbA binding to Sec61 results in broad substrate-nonselective inhibition of ER protein import and potent cytotoxicity against specific cancer cell lines. CbA targets a lumenal cavity of Sec61α that is partially shared with known Sec61 inhibitors, yet profiling against resistance conferring Sec61α mutations identified from human HCT116 cells suggests a distinct binding mode for CbA. Specifically, despite conferring strong resistance to all previously known Sec61 inhibitors, the Sec61α mutant R66I remains sensitive to CbA. A further unbiased screen for Sec61α resistance mutations identified the CbA-resistant mutation S71P, which confirms non-identical binding sites for CbA and apratoxin A and supports the susceptibility of the Sec61 plug region for channel inhibition. Remarkably, CbA, apratoxin A andipomoeassin F do not display comparable patterns of potency and selectivity in the NCI60 panel of human cancer cell lines.Our work connecting CbA activity with selective prevention of secretory and membrane protein biogenesis by inhibition of Sec61 opens up possibilities for developing new Sec61 inhibitors with improved drug-like properties that are based on the coibamide pharmacophore.


Antioxidants ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 11 ◽  
Author(s):  
Tom E. Forshaw ◽  
Reetta Holmila ◽  
Kimberly J. Nelson ◽  
Joshua E. Lewis ◽  
Melissa L. Kemp ◽  
...  

Peroxiredoxins have a long-established cellular function as regulators of redox metabolism by catalyzing the reduction of peroxides (e.g., H2O2, lipid peroxides) with high catalytic efficiency. This activity is also critical to the initiation and relay of both phosphorylation and redox signaling in a broad range of pathophysiological contexts. Under normal physiological conditions, peroxiredoxins protect normal cells from oxidative damage that could promote oncogenesis (e.g., environmental stressors). In cancer, higher expression level of peroxiredoxins has been associated with both tumor growth and resistance to radiation therapies. However, this relationship between the expression of peroxiredoxins and the response to radiation is not evident from an analysis of data in The Cancer Genome Atlas (TCGA) or NCI60 panel of cancer cell lines. The focus of this review is to summarize the current experimental knowledge implicating this class of proteins in cancer, and to provide a perspective on the value of targeting peroxiredoxins in the management of cancer. Potential biases in the analysis of the TCGA data with respect to radiation resistance are also highlighted.


2017 ◽  
Author(s):  
Isidro Cortés-Ciriano ◽  
Daniel S. Murrell ◽  
Bernard Chetrit ◽  
Andreas Bender ◽  
Thérèse Malliavin ◽  
...  

AbstractSummaryCCLP (Cancer Cell Line Profiler) is a webserver for the prediction of compound activity across the NCI60 panel. CCLP uses a multi-task Random Forest model trained on 941,831 data-points that integrates structural information from 17,142 compounds and multi-omics data sets from 59 cancer cell lines. In addition, CCLP also implements conformal prediction to provide individual prediction errors at several confidence levels. CCLP computes compound descriptors for a set of input molecules and predicts their activity across the NCI60 panel. The output of running CCLP consists of one barplot per input compound displaying the predicted activities and errors across the NCI60 panel, as well as a text file reporting the predicted activities and errors in predictionAvailabilityCCLP is freely available on the web at cclp.marseille.inserm.fr


2005 ◽  
Vol 65 (4) ◽  
pp. 1554-1560 ◽  
Author(s):  
Wen Zhang ◽  
Aaron Braun ◽  
Zachary Bauman ◽  
Horatiu Olteanu ◽  
Peter Madzelan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document