New insights into the binding behavior of lomefloxacin and human hemoglobin using biophysical techniques: binary and ternary approaches

2019 ◽  
Vol 43 (21) ◽  
pp. 8132-8145 ◽  
Author(s):  
Parisa Mokaberi ◽  
Vida Reyhani ◽  
Zeinab Amiri-Tehranizadeh ◽  
Mohammad Reza Saberi ◽  
Sima Beigoli ◽  
...  

Demonstrates the overlap that had been induced between the fluorescence emission spectrum of Hb and the absorption spectrum of drugs, which has proved that there is a high probability to the occurrence of energy transfer from Hb and LMF in the absence and presence of NRF.

2010 ◽  
Vol 130 (12) ◽  
pp. 2495-2499 ◽  
Author(s):  
Enhai Song ◽  
Weiren Zhao ◽  
Wei Zhang ◽  
Huachu Ming ◽  
Yuchun Yi ◽  
...  

1977 ◽  
Vol 28 (1) ◽  
pp. 167-177
Author(s):  
P.M. Keller ◽  
S. Person ◽  
W. Snipes

Two probes were synthesized which consist of fluorescent molecules conjugated to saturated hydrocarbon chains, 18 carbons long, to ensure their localization into cellular membranes. There is an overlap between the emission spectrum of one probe (donor) and the absorption spectrum of the other probe (acceptor). By the use of appropriate wavelengths it is possible to specifically excite the donor probe and record the fluorescence of the acceptor probe. Two cell populations, each labelled with one of the probes, were infected with a virus that causes cell fusion, mixed in equal proportions, and the fluorescence of the acceptor probe measured as a function of time after infection. An increase in fluorescence was observed beginning at the time of onset of cell fusion indicating a mixing of the fluorescent membrane molecules. An investigation of the distance dependence indicated that the increase in fluorescence was mainly due to resonance energy transfer and not to photon emission and reabsorption. Resonance energy transfer requires that the 2 probes be close together and that there be an overlap of the emission spectrum of the donor probe and the absorption spectrum of the acceptor probe. The possible application of this assay to other types of membrane fusion is noted.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Li Jin ◽  
Ying Wang ◽  
Fengkai Yan ◽  
Jianpo Zhang ◽  
Fangli Zhong

Nitrogen-doped graphene quantum dots had been successfully synthesized and characterized by using transmission electron microscope, X-ray photoelectron spectroscopy, absorbance spectrum, fluorescence emission spectrum, and fluorescence decay curve. TEM results indicated that the diameters of the as-prepared nitrogen-doped graphene quantum dots were in the range of 2 - 5 nm and the lattice space is about 0.276 nm; Raman spectrum result indicated that there were two characteristic peaks, generally named D (~1408 cm−1) and G (~1640 cm−1) bands; both TEM and Raman spectrum results indicated that the as-synthesized product was graphene quantum dots. Deconvoluted high resolution XPS spectra for C1s, O1s, and N1s results indicated that there are -NH-, -COOH, and -OH groups on the surface of nitrogen-doped graphene quantum dot. Fluorescence emission spectrum indicated that the maximum fluorescence emission spectrum of nitrogen-doped graphene quantum dots was blue shift about 30.1 nm and the average fluorescence decay time of nitrogen-doped graphene quantum dots increased about 2 ns, compared with graphene quantum dots without doping of nitrogen. Then, the as-prepared nitrogen-doped graphene quantum dots were used to quantitatively analyze brilliant blue based on the fluorescent quenching of graphene quantum dots, and the effect of pH and reaction time on this fluorescent quenching system was also obtained. Under selected condition, the linear regression equations were F0/F=0.0087 (brilliant blue) + 0.9553 and F0/F=0.01205 (brilliant blue) + 0.6695, and low detection limit was 3.776 μmol/L (3.776 nmol/mL). Once more diluted N-GQDs (0.05 mg/mL) were used, the low detection limit could reach 94.87 nmol/L. Then, temperature-dependent experiment, absorbance spectra, and dynamic fluorescence quenching rate constant were used to study the quenching mechanism; all results indicated that this quenching process was a static quenching process based on the formation of complex between nitrogen-doped graphene quantum dots and brilliant blue through hydrogen bond. Particularly, this method was used to quantitatively analyze the wine sample, of which results have a high consistence with the results of the spectrophotometric method; demonstrating this fluorescence quenching method could be used in practical sample application.


2019 ◽  
Vol 43 (23) ◽  
pp. 9090-9105 ◽  
Author(s):  
Kannan Ramamurthy ◽  
E. J. Padma Malar ◽  
Chellappan Selvaraju

Fluorescence emission spectrum of ketocoumarin dimers in an alcohol:water binary mixture and the solid state.


1982 ◽  
Vol 37 (5-6) ◽  
pp. 448-451 ◽  
Author(s):  
G. Harnischfeger ◽  
H. Jarry

Abstract Algae, when slowly cooled down to around -5 °C, undergo a change in the fluorescence emission spectrum subsequently taken at liqu. nitrogen temperature. This change resembles the magnesium effect described by Murata [BBA 189,171 - 181, (1969)] for isolated chloroplasts. Evidence is shown, that both effects are indeed analogous. Cooling the organisms seems to in­ crease the permeability of the thylakoids for cations and, thus, a depletion with concomitant changes in membrane structure. The system serves as a model for the probable in vivo control of pigment interaction through alteration of membrane properties.


2021 ◽  
Vol 2 (4) ◽  
pp. 564-575
Author(s):  
Amanda Jalihal ◽  
Thuy Le ◽  
Samantha Macchi ◽  
Hannah Krehbiel ◽  
Mujeebat Bashiru ◽  
...  

Herein, an ionic material (IM) with Förster Resonance Energy Transfer (FRET) characteristics is reported for the first time. The IM is designed by pairing a Nile Blue A cation (NBA+) with an anionic near-infrared (NIR) dye, IR820−, using a facile ion exchange reaction. These two dyes absorb at different wavelength regions. In addition, NBA+ fluorescence emission spectrum overlaps with IR820− absorption spectrum, which is one requirement for the occurrence of the FRET phenomenon. Therefore, the photophysical properties of the IM were studied in detail to investigate the FRET mechanism in IM for potential dye sensitized solar cell (DSSCs) application. Detailed examination of photophysical properties of parent compounds, a mixture of the parent compounds, and the IM revealed that the IM exhibits FRET characteristics, but not the mixture of two dyes. The presence of spectator counterion in the mixture hindered the FRET mechanism while in the IM, both dyes are in close proximity as an ion pair, thus exhibiting FRET. All FRET parameters such as spectral overlap integral, Förster distance, and FRET energy confirm the FRET characteristics of the IM. This article presents a simple synthesis of a compound with FRET properties which can be further used for a variety of applications.


Sign in / Sign up

Export Citation Format

Share Document