Temperature-dependent heating efficiency of magnetic nanoparticles for applications in precision nanomedicine

Nanoscale ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 6360-6377 ◽  
Author(s):  
Gabriele Barrera ◽  
Paolo Allia ◽  
Paola Tiberto

The power released by magnetic nanoparticles submitted to an alternating driving field is temperature dependent owing to the variation of the fundamental magnetic properties.

Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3208 ◽  
Author(s):  
Jeotikanta Mohapatra ◽  
Meiying Xing ◽  
J. Ping Liu

Localized heat induction using magnetic nanoparticles under an alternating magnetic field is an emerging technology applied in areas including, cancer treatment, thermally activated drug release and remote activation of cell functions. To enhance the induction heating efficiency of magnetic nanoparticles, the intrinsic and extrinsic magnetic parameters influencing the heating efficiency of magnetic nanoparticles should be effectively engineered. This review covers the recent progress in the optimization of magnetic properties of spinel ferrite nanoparticles for efficient heat induction. The key materials factors for efficient magnetic heating including size, shape, composition, inter/intra particle interactions are systematically discussed, from the growth mechanism, process control to chemical and magnetic properties manipulation.


2015 ◽  
Vol 230 ◽  
pp. 101-107
Author(s):  
Alexander I. Tovstolytkin ◽  
S.O. Solopan ◽  
V.M. Kalita ◽  
S.M. Ryabchenko ◽  
Anatolii G. Belous

Structural and magnetic characteristics of (La,Sr)MnO3 nanoparticles synthesized by different methods have been studied in the work. The specific loss power which is released on the exposure of an ensemble of synthesized particles to alternating magnetic field was calculated and measured experimentally. The contributions to the specific loss power resulted from different heating mechanisms have been discussed. The directions to enhance the heating efficiency of various kinds of magnetic nanoparticles are outlined


Nanoscale ◽  
2021 ◽  
Author(s):  
Barbara Farkas ◽  
Nora Henriette De Leeuw

Implementation of magnetic nanoparticles in biomedicine requires their passivation, which often comes at a cost of diminished magnetic properties. For the design of nano-agents with targeted magnetic behaviour, it is...


2002 ◽  
Vol 17 (11) ◽  
pp. 2960-2965 ◽  
Author(s):  
E. Arushanov ◽  
L. Ivanenko ◽  
D. Eckert ◽  
G. Behr ◽  
U. K. Rößler ◽  
...  

Results of magnetization and magnetic susceptibility measurements on undoped and Co-doped FeSi2.5 single crystals are presented. The temperature dependence of the magnetic susceptibility of the Co-doped sample in the range of 5–300 K can be explained by temperature-dependent contributions due to paramagnetic centers and the carriers excited thermally in the extrinsic conductivity region. The values of the paramagnetic Curie temperature and activation energy of the donor levels were estimated. It is also shown that the magnetic susceptibility of Co-doped samples cooled in zero external field and in a field are different. This resembles the properties of spin-glasses and indicates the presence of coupling between magnetic centers.


2021 ◽  
Author(s):  
Sandra B. Ramírez-García ◽  
Luis M. Alva-Valdivia

<p>Magnetite formation of serpentinized ultramafic rocks leads to variations in the magnetic properties of serpentinites; however, magnetite precipitation is still on debate.</p><p>In this work, we analyzed 60 cores of ultramafic rocks with a variety of serpentinization degrees. These rocks belong to the ultramafic-mafic San Juan de Otates complex in Guanajuato, Mexico. Geochemical studies have been previously conducted, enabling us to compare changes in the magnetic properties against the chemical variations generated by the serpentinization process. By studying the density and magnetic properties such as anisotropy of magnetic susceptibility, hysteresis curves as well as magnetic and temperature-dependent susceptibility and, we were able to identify the relationship between magnetic content and serpentinization degree, the predominant magnetic carrier, and to what extent the magnetite grain size depends on the serpentinization.  Variations in these parameters allowed us to better constrain the temperature at which serpentinization occurred, the generation of other Fe-rich phases such as Fe-brucite and/or Fe-rich serpentine as well as distinctive rock textures formed at different serpentinization degrees.</p>


2011 ◽  
Vol 109 (7) ◽  
pp. 07B747 ◽  
Author(s):  
D. B. Xu ◽  
J. S. Chen ◽  
T. J. Zhou ◽  
G. M. Chow

Sign in / Sign up

Export Citation Format

Share Document