Effect of aspect ratios of rutile TiO2 nanorods on overall photocatalytic water splitting performance

Nanoscale ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 4895-4902 ◽  
Author(s):  
Bing Fu ◽  
Zhijiao Wu ◽  
Shuang Cao ◽  
Kai Guo ◽  
Lingyu Piao

The spatial separation of reduction and oxidation reaction sites on the different facets of a semiconductor is an ideal and promising route for the overall photocatalytic water splitting due to efficient charge carrier separation.

Nanoscale ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 5685-5685
Author(s):  
Bing Fu ◽  
Zhijiao Wu ◽  
Shuang Cao ◽  
Kai Guo ◽  
Lingyu Piao

Correction for ‘Effect of aspect ratios of rutile TiO2 nanorods on overall photocatalytic water splitting performance’ by Bing Fu et al., Nanoscale, 2020, DOI: 10.1039/c9nr10870j.


2018 ◽  
Vol 43 (33) ◽  
pp. 15815-15822 ◽  
Author(s):  
Anupam Srivastav ◽  
Pawan Kumar ◽  
Anuradha Verma ◽  
York R. Smith ◽  
Vibha Rani Satsangi ◽  
...  

2020 ◽  
Author(s):  
David Maria Tobaldi ◽  
Kamila Koci ◽  
Miroslava Edelmannova ◽  
Luc Lajaunie ◽  
Bruno Figueiredo ◽  
...  

<p>Hydrogen, as energy carrier, is a zero-emission fuel. Being green and clean, it is considered to play an important role in energy and environmental issues. Photocatalytic water splitting is a process used to generate hydrogen from the dissociation of water. Titanium dioxide is still the archetype material for photocatalytic water splitting. However, because of the fast recombination of the photo-generated exciton, the yield of the reaction is typically low. In this work, we have modified the surface of titanium dioxide with copper and copper/graphene to sensitise it to visible light, and to increase the spatial charge carrier separation, thus extending the quantum yield of H<sub>2</sub> production from methanol/water mixtures. Results showed that, in the analysed system, exists an optimum amount of copper plus graphene (<i>i.e.</i> 0.5 mol% copper plus 0.5 wt% graphene) to grant a two-fold increase in the photocatalytic hydrogen generation compared to that of bare titania. That system proved itself to be complex and dynamic. This was attributed to the increased spatial charge carrier separation exploited by graphene (under 365 and 405 nm irradiation), and to the continuous reduction of Cu(II) to Cu(I) due to IFCT that has proven to be an excellent visible-light sensitiser in the copper/graphene-titania system.</p><p>Hybrid titania-copper-graphene materials could therefore be exploited in the field of light-to-energy applications.</p>


2020 ◽  
Author(s):  
David Maria Tobaldi ◽  
Kamila Koci ◽  
Miroslava Edelmannova ◽  
Luc Lajaunie ◽  
Bruno Figueiredo ◽  
...  

<p>Hydrogen, as energy carrier, is a zero-emission fuel. Being green and clean, it is considered to play an important role in energy and environmental issues. Photocatalytic water splitting is a process used to generate hydrogen from the dissociation of water. Titanium dioxide is still the archetype material for photocatalytic water splitting. However, because of the fast recombination of the photo-generated exciton, the yield of the reaction is typically low. In this work, we have modified the surface of titanium dioxide with copper and copper/graphene to sensitise it to visible light, and to increase the spatial charge carrier separation, thus extending the quantum yield of H<sub>2</sub> production from methanol/water mixtures. Results showed that, in the analysed system, exists an optimum amount of copper plus graphene (<i>i.e.</i> 0.5 mol% copper plus 0.5 wt% graphene) to grant a two-fold increase in the photocatalytic hydrogen generation compared to that of bare titania. That system proved itself to be complex and dynamic. This was attributed to the increased spatial charge carrier separation exploited by graphene (under 365 and 405 nm irradiation), and to the continuous reduction of Cu(II) to Cu(I) due to IFCT that has proven to be an excellent visible-light sensitiser in the copper/graphene-titania system.</p><p>Hybrid titania-copper-graphene materials could therefore be exploited in the field of light-to-energy applications.</p>


2020 ◽  
Vol 8 (40) ◽  
pp. 20963-20969 ◽  
Author(s):  
Wei Chen ◽  
Guo-Bo Huang ◽  
Hao Song ◽  
Jian Zhang

An efficient charge transfer channel for improving the photocatalytic water splitting activity and durability of CdS without sacrificial agents.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 705
Author(s):  
Lin Ju ◽  
Jingzhou Qin ◽  
Liran Shi ◽  
Gui Yang ◽  
Jing Zhang ◽  
...  

For the emerging Janus transition metal dichalcogenides (TMD) layered water-splitting photocatalysts, stacking the monolayers to form bilayers has been predicted to be an effective way to improve their photocatalytic performances. To achieve this, the stacking pattern plays an important role. In this work, by means of the density functional theory calculations, we comprehensively estimate energetical stability, light absorption and redox capacity of Janus WSSe bilayer with different stacking patterns. Unfortunately, the Janus WSSe bilayer with the most stable configuration recover the out-of-plane symmetry, which is not in favor of the photocatalytic reactions. However, rolling the Janus WSSe bilayer into double-walled nanotube could stabilize the appropriate stacking pattern with an enhanced instinct dipole moment. Moreover, the suitable band edge positions, high visible light absorbance, outstanding solar-to-hydrogen efficiency (up to 28.48%), and superior carrier separation promise the Janus WSSe double-walled nanotube the potential for the photocatalytic water-splitting application. Our studies not only predict an ideal water-splitting photocatalyst, but also propose an effective way to improve the photocatalytic performances of Janus layered materials.


2014 ◽  
Vol 53 (5S3) ◽  
pp. 05HB01 ◽  
Author(s):  
Jaehyun Hur ◽  
Kyuhyun Im ◽  
Un Jeong Kim ◽  
Tae-Ho Kim ◽  
Jong-Jin Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document