scholarly journals Acrylate-assisted fractal nanostructured polymer dispersed liquid crystal droplet based vibrant colored smart-windows

RSC Advances ◽  
2019 ◽  
Vol 9 (22) ◽  
pp. 12645-12655 ◽  
Author(s):  
Sunil Kumar ◽  
Hyeryeon Hong ◽  
Woosuk Choi ◽  
Imtisal Akhtar ◽  
Malik Abdul Rehman ◽  
...  

Vibrant colored smart-windows were fabricated based on acrylate-assisted fractal nanostructured polymer dispersed liquid crystals.

2011 ◽  
Vol 181-182 ◽  
pp. 79-82
Author(s):  
Xing Fang Jiang ◽  
Shu Xin Wu

Polymer-dispersed liquid crystals are one kind of important devices. With a He-Ne laser and a photoelectric detector, we measured the driving-voltage dependent and viewing-angle dependent transmission for a polymer-dispersed liquid crystal device. Our results showed that the polymer-dispersed liquid crystal device worked at the driving voltage of 4 V and the effective viewing angle of about 65 degree.


2021 ◽  
Vol 03 (04) ◽  
pp. 1-1
Author(s):  
Yang Zhang ◽  
◽  
Jiawen Chen ◽  
Xiaowen Hu ◽  
Wei Zhao ◽  
...  

The reverse mode polymer dispersed liquid crystal (PDLC) is an emerging smart window technology. Unlike traditional PDLCs, a reverse mode PDLC can be transparent and opaque in the absence and presence of an external electric field. This report provides a brief introduction to several reverse modes PDLC smart window technologies, focusing on polymer-stabilized liquid crystals (PSLCs). The systems based on electrohydrodynamic instability (EHDI) of liquid crystals have also been discussed. The working principles, mode of material design, and recent developments are presented for each technology. The current obstacles have also been pointed out. The prospects of smart windows have also been presented.


RSC Advances ◽  
2018 ◽  
Vol 8 (39) ◽  
pp. 21690-21698 ◽  
Author(s):  
Le Zhou ◽  
Haipeng Ma ◽  
Cheng Han ◽  
Wei Hu ◽  
Shuaifeng Zhang ◽  
...  

A novel light diffuser based on a thermally cured polymer dispersed liquid crystal film was made by thermally curing epoxy monomers with thiols and polyamine in a solution of monomers and liquid crystals between two transparent polyethylene terephthalates.


2008 ◽  
Vol 2008 ◽  
pp. 1-52 ◽  
Author(s):  
Y. J. Liu ◽  
X. W. Sun

By combining polymer-dispersed liquid crystal (PDLC) and holography, holographic PDLC (H-PDLC) has emerged as a new composite material for switchable or tunable optical devices. Generally, H-PDLC structures are created in a liquid crystal cell filled with polymer-dispersed liquid crystal materials by recording the interference pattern generated by two or more coherent laser beams which is a fast and single-step fabrication. With a relatively ideal phase separation between liquid crystals and polymers, periodic refractive index profile is formed in the cell and thus light can be diffracted. Under a suitable electric field, the light diffraction behavior disappears due to the index matching between liquid crystals and polymers. H-PDLCs show a fast switching time due to the small size of the liquid crystal droplets. So far, H-PDLCs have been applied in many promising applications in photonics, such as flat panel displays, switchable gratings, switchable lasers, switchable microlenses, and switchable photonic crystals. In this paper, we review the current state-of-the-art of H-PDLCs including the materials used to date, the grating formation dynamics and simulations, the optimization of electro-optical properties, the photonic applications, and the issues existed in H-PDLCs.


2020 ◽  
Vol 263 ◽  
pp. 120155
Author(s):  
Saboor Shaik ◽  
Kirankumar Gorantla ◽  
Venkata Ramana M. ◽  
Shantiswaroop Mishra ◽  
Kishor S. Kulkarni

2001 ◽  
Vol 709 ◽  
Author(s):  
Michael D. Schulte ◽  
Stephen J. Clarson ◽  
Lalgudi V. Natarajan ◽  
C. Allan Guymon ◽  
Timothy J. Bunning

ABSTRACTHolographic polymer dispersed liquid crystal (H-PDLC) films with partially fluorinated matrices were investigated. Electro-optical and morphological studies revealed that fluorinated composites were substantially different from non-fluorinated analogues. The addition of a fluorinated monofunctional acrylate monomer to a pentaacrylate-derived polymer matrix resulted in improved diffraction efficiency. These findings suggest that the partial fluorination of the host polymer decreases the compatibility between the matrix and liquid crystal phase. Morphological differences between fluorinated films and non-fluorinated control specimens were verified using low-voltage, high-resolution scanning electron microscopy (LVHRSEM).


1992 ◽  
Vol 25 (1) ◽  
pp. 133-137 ◽  
Author(s):  
Liang Chy Chien ◽  
C. Lin ◽  
David S. Fredley ◽  
James W. McCargar

Sign in / Sign up

Export Citation Format

Share Document