scholarly journals A high-throughput bioanalytical assay to support pharmacokinetic interaction study of oxycodone and diazepam in Sprague Dawley rats

RSC Advances ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 886-896 ◽  
Author(s):  
Nageswara R. Pilli ◽  
Suresh Narayanasamy ◽  
Lin Xu ◽  
Ashok Chockalingam ◽  
Katherine I. Shea ◽  
...  

A high-throughput bioanalytical method for the simulataneous determination of oxycodone and diazepam to support the evaluation of respiratory depression in rats upon co-administration of oxycodone and diazepam.

2019 ◽  
Vol 33 (12) ◽  
Author(s):  
Priyanka Lohar ◽  
Manish Kumar Sharma ◽  
Amit Kumar Sahu ◽  
Rajeswari Rathod ◽  
Pinaki Sengupta

Bioanalysis ◽  
2020 ◽  
Vol 12 (21) ◽  
pp. 1509-1519
Author(s):  
Weiping Wang ◽  
Pengyan Li ◽  
Mengna Fang ◽  
Xiaoting Li ◽  
Yu Zhang ◽  
...  

Aim: Nimodipine and 3-n-butylphthalide are co-administered to treat vascular dementia, but the pharmacokinetic interaction between the two drugs is still unknown. Therefore, a robust, high-throughput and economical supercritical fluid chromatography–ESI-MS/MS method has been initially developed to simultaneously determine nimodipine and 3-n-butylphthalide in beagle plasma, in order to study the safety of co-administration. Materials & methods: After a simple protein precipitation procedure, isocratic elution with mobile phase of CO2 and methanol (containing 0.3% formic acid and 2 mM ammonium acetate) was applied to minimize run time and facilitate sensitive and high-throughput bioanalysis. The method was fully validated according to US FDA Guidance. The validated method was then successfully applied in a pharmacokinetic interaction study. Results: The results indicated there is no significant pharmacokinetic interaction between the two drugs.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Juan Wei ◽  
Wenjuan Ma ◽  
Guangzhe Yao ◽  
Qi Jia ◽  
Xuejing Cheng ◽  
...  

A high-throughput HPLC-MS/MS method was developed and validated for the determination of four antihypertensive drugs including metoprolol tartrate, hydrochlorothiazide, nifedipine, and valsartan in rat plasma. The Sprague-Dawley rats were randomly divided into three groups: A Group: gastric-administration of metoprolol tartrate, hydrochlorothiazide, nifedipine, or valsartan; B Group: a single intravenous injection of SXT, then dosing as the A group; C Group: daily injection of SXT through the tail vein for 8 consecutive days and dosing as the A group on the eighth day. For metoprolol tartrate and valsartan, blood samples were collected before administration and at time points 0.03, 0.08, 0.17, 0.25, 0.5, 1, 2, 4, 6, 8, 10, 12, and 24 h from the fossa orbitalis vein. For hydrochlorothiazide and nifedipine, the time points were 0, 0.08, 0.17, 0.25, 0.5, 0.75, 1, 2, 4, 6, 8, 10, 12, and 24 h. The plasma samples containing different individual antihypertensive drug were mixed and prepared by protein precipitation with methanol. The chromatographic separation was performed on an Agilent Eclipse Plus C18 column (2.1 mm×100 mm, 3.5 μm) using gradient elution with mobile phase consisting of acetonitrile and water (containing 0.1% formic acid). The flow rate was 0.3 mL/min. The detection was accomplished on a tandem mass spectrometer with an electrospray ionization (ESI) source by multiple reaction monitoring (MRM) in both positive and negative modes. The method was successfully applied to a pharmacokinetic interaction study of Shuxuetong injection on the antihypertensive drugs. The results suggested that SXT could increase the total amount of metoprolol tartrate and nifedipine in plasma and showed little influence on the pharmacokinetic behaviors of hydrochlorothiazide and valsartan.


2021 ◽  
Vol 17 ◽  
Author(s):  
Xingxing Zhuang ◽  
Li Zhou ◽  
Renhua Miao ◽  
Shoudong Ni ◽  
Meng Li

Introduction:: Asari Radix et Rhizoma (ARR) and dried ginger (Zingiber officinalis) (DG) are often used together in drug preparations in traditional Chinese medicine (TCM) to treat respiratory diseases including cold, bronchitis and pneumonia. Previous studies suggested that ARR and/or DG may influence the pharmacokinetics of other herbal components. In the current study, we examined pharmacokinetic interactions between ARR and DG in rats after oral administration. Methods:: We developed a method based on ultra-high-performance liquid chromatography-tandem mass spectrometry to simultaneously measure serum concentrations of two active components each in ARR (L-asarinin and sesamin) and DG (6-gingerol and 6-shogaol). Adult Sprague-Dawley rats were starved overnight, then given ARR extract, DO extract, or a co-decoction of ARR and DG by gastric gavage (6 g raw material per kg body weight; n = 6 per group). Blood samples were collected prior to drug administration and at the following times (h) afterward: 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 6.0, 8.0, 12.0 and 24.0. Pharmacokinetic parameters were compared using Student’s t test for independent samples. Results:: A simple, rapid, sensitive analytical method has been developed to detect four bioactive components simultaneously in the ARR-DG herbal pair. Pharmacokinetic parameters including Cmax, Tmax, T1/2 and AUC(0~t) were calculated using the non-compartmental model with the DAS 2.0 pharmacokinetic software. For L-asarinin, Tmax was 2.00 ± 0.00 h in ARR animals and 1.67±0.26 h in ARR-DG animals (P<0.05), T1/2 was 8.58 ± 1.75 h in ARR and 11.93 ± 2.13 h in ARR-DG (P<0.05). For 6-gingerol, Cmax was 350.48 ± 23.85 ng/mL in DG animals and 300.21 ± 20.02 ng/mL in ARR-DG (P<0.01), Tmax was 2.83 ± 0.41 h in DG and 2.17 ± 0.41 h in ARR-DG (P<0.05) and AUC(0~t) was 1.93 ± 0.15 mg/mL•h in ARR and 1.70 ± 0.15 mg/mL•h in ARR-DG (P<0.05). For 6-shogaol, Cmax was 390.28 ± 26.02 ng/mL in DG animals and 455.63 ± 31.01 ng/mL in ARR-DG (P<0.01), Tmax was 2.93 ± 0.10 h in DG and 1.92 ± 0.10 h in ARR-DG (P<0.01), T1/2 was 3.74 ± 0.29 h in DG and 3.28 ± 0.22 h in ARR-DG (P<0.01), and AUC(0~t) was 2.15 ± 0.18 mg/mL•h in DG and 2.73 ± 0.15 mg/mL•h in ARR-DG (P<0.01). Conclusions:: Pharmacokinetic interations between ARR and DG decrease Tmax, increase T1/2 but do not affect overall bioavailability of L-asarinin in ARR. The interactions in ARR-DG decrease Cmax and Tmax but increase T1/2 and AUC(0~t) of 6-gingerol in DG. The interactions increase Cmax and AUC(0~t) but decrease Tmax and T1/2 of 6- shogaol in DG. Interactions in ARR-DG do not affect the pharmacokinetics of sesamin.


2021 ◽  
Vol 22 ◽  
Author(s):  
Jian Le ◽  
Yuehua Liao ◽  
Shengni Li ◽  
Xiujuan Chen ◽  
Zhanying Hong

Background: Pantoprazole and atorvastatin are often used jointly in the clinic. The drug-drug interaction of pantoprazole and atorvastatin is worthy of being investigated. Objective: A highly rapid, sensitive, and selective LC-MS/MS method was developed for simultaneous quantification of pantoprazole and atorvastatin in rat plasma. Methods: Omeprazole and atorvastatin-d5 were used as the internal standards (ISs) of pantoprazole and atorvastatin, respectively. Simple protein precipitation was used to extract analytes from 50.0 μL plasma samples. Results: The chromatographic separation was achieved on a C18 column and the total chromatographic run time was 3.2 min. Acquisition of mass spectrometric data was performed on a triple-quadrupole mass spectrometer in multiple- reaction-monitoring (MRM) mode with an ESI source using the transition m/z 384→ 200 for pantoprazole and m/z 559.4→ 440.2 for atorvastatin, respectively. The method was validated over the concentration range of 20.0 ∼ 5000 ng/mL for pantoprazole and 1.00 ∼ 250 ng/mL for atorvastatin. All the validation results, including linearity, specificity, precision, accuracy, extraction recovery, matrix effect, and stability, met the acceptance criteria as per FDA guidelines. Conclusion: This method was successfully applied to a pharmacokinetic interaction study in Wistar rats. The results revealed significant evidence for the drug-drug interaction between pantoprazole and atorvastatin.


Bioanalysis ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 11-22 ◽  
Author(s):  
Libin Wang ◽  
Shouchang Gai ◽  
Xiaorui Zhang ◽  
Xiaohui Xu ◽  
Nan Gou ◽  
...  

Aim: A sensitive and reliable LC–MS/MS method has been established and validated to the quantitation of rivaroxaban (RIV) and TAK-438 in rat plasma using carbamazepine as internal standard. Results: The procedure of method validation was conducted according to the guidelines of EMA and US FDA. At the same time, the method was applied to pharmacokinetic interactions study between RIV and TAK-438 for the first time. When RIV and TAK-438 co-administration to rats, main pharmacokinetic parameters of TAK-438 like AUC(0-t), AUC(0-∞) and Cmax had statistically significant increase. The main pharmacokinetic parameters of RIV have no statistically significant difference (p > 0.05) when co-administered except for t1/2 (p < 0.01). Conclusion: The results indicated that drug–drug interactions occurred between RIV and TAK-438 when co-administered to rats.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Chun-Bo Jiang ◽  
Ming-Gang Wei ◽  
Yue Tu ◽  
Hao Zhu ◽  
Chun-Qing Li ◽  
...  

Objectives. We investigated the action of triptolide in rats with adriamycin-induced nephropathy and evaluated the possible mechanisms underlying its protective effect against podocyte injury.Methods. In total, 30 healthy male Sprague-Dawley rats were randomized into three groups (normal group, model group, and triptolide group). On days 7, 28, 42, and 56, 24 h urine samples were collected. All rats were sacrificed on day 56, and their blood and renal tissues were collected for determination of biochemical and molecular biological parameters. Expression of miRNAs in the renal cortex was analyzed by a biochip assay and RT-PCR was used to confirm observed differences in miRNA levels.Results. Triptolide decreased proteinuria, improved renal function without apparent adverse effects on the liver, and alleviated renal pathological lesions. Triptolide also elevated the nephrin protein level. Furthermore, levels of miR-344b-3p and miR-30b-3p were elevated in rats with adriamycin-induced nephropathy, while triptolide treatment reversed the increase in the expression of these two miRNAs.Conclusions. These results suggest that triptolide may attenuate podocyte injury in rats with adriamycin-induced nephropathy by regulating expression of miRNA-344b-3p and miRNA-30b-3p.


Sign in / Sign up

Export Citation Format

Share Document