A graphdiyne-based carbon material for electroless deposition and stabilization of sub-nanometric Pd catalysts with extremely high catalytic activity

2019 ◽  
Vol 7 (21) ◽  
pp. 13142-13148 ◽  
Author(s):  
Liang-Liang Yang ◽  
Hong-Juan Wang ◽  
Juan Wang ◽  
Yu Li ◽  
Wen Zhang ◽  
...  

A new graphdiyne-based carbon material was synthesized as an ideal substrate for electroless deposition and stabilization of sub-nanometric Pd catalysts, which showed extremely high catalytic activities for the reduction of nitroarenes and Suzuki coupling reactions.

The Analyst ◽  
2021 ◽  
Author(s):  
Yan Gao ◽  
Changwei Li ◽  
Wei Yi ◽  
Junjie Fei ◽  
Lanhua Yi ◽  
...  

Graphdiyne (GDY), a novel two-dimensional (2D) carbon material with sp- and sp2-hybridized carbon atoms, has earned a lot of attention in recent years.


2018 ◽  
Vol 9 (3) ◽  
pp. 676-680 ◽  
Author(s):  
Li Qiu ◽  
Ryan McCaffrey ◽  
Yinghua Jin ◽  
Yu Gong ◽  
Yiming Hu ◽  
...  

Cage-templated synthesis of narrowly distributed palladium nanoparticles (1.8 ± 0.2 nm) and their high catalytic activity in Suzuki–Miyaura coupling reactions are reported.


Author(s):  
Yonis Fornazier Filho ◽  
Ana Caroliny Carvalho da Cruz ◽  
Rolando Pedicini ◽  
José Ricardo Cezar Salgado ◽  
Priscilla Paiva Luz ◽  
...  

AbstractPhysical and electrochemical properties of Pd catalysts combined with Ru and Mo on carbon support were investigated. To this end, Pd, Pd1.3Ru1.0, Pd3.2Ru1.3Mo1.0 and Pd1.5Ru0.8Mo1.0 were synthesized on Carbon Vulcan XC72 support by the method of thermal decomposition of polymeric precursors and then physically and electrochemically characterized. The highest reaction yields are obtained for Pd3.2Ru1.3Mo1.0/C and Pd1.5Ru0.8Mo1.0/C and, as demonstrated by thermal analysis, they also show the smallest metal/carbon ratio compared the other catalysts. XRD (X-ray Diffraction) and Raman analyses show the presence of PdO and RuO2 for the Pd/C and the Pd1.3Ru1.0/C catalysts, respectively, a fact not observed for the Pd3.2Ru1.3 Mo1.0 /C and the Pd1.5Ru0.8Mo1.0/C catalysts. The catalytic activities were tested for the ethanol oxidation in alkaline medium. Cyclic voltammetry (CV) shows Pd1.3Ru1.0/C exhibiting the highest peak of current density, followed by Pd3.2Ru1.3Mo1.0/C, Pd1.5Ru0.8Mo1.0/C and Pd/C. From, chronoamperometry (CA), it is possible to observe the lowest rate of poisoning for the Pd1.3Ru1.0/C, followed by Pd3.2Ru1.3Mo1.0/C, Pd1.5Ru0.8Mo1.0/C and Pd/C. These results suggested that catalytic activity of the binary and the ternary catalysts are improved in comparison with Pd/C. The presence of RuO2 activated the bifunctional mechanism and improved the catalytic activity in the Pd1.3Ru1.0/C catalyst. The addition of Mo in the catalysts enhanced the catalytic activity by the intrinsic mechanism, suggesting a synergistic effect between metals. In summary, we suggest that it is possible to synthesize ternary PdRuMo catalysts supported on Carbon Vulcan XC72, resulting in materials with lower poisoning rates and lower costs than Pd/C. Graphic abstract


2017 ◽  
Vol 5 (21) ◽  
pp. 10150-10153 ◽  
Author(s):  
Lini Yang ◽  
Qi Zhan ◽  
Zhenni Wang ◽  
Qiang Chen ◽  
Jing Tong ◽  
...  

Au octahedra have been encapsulated into Pd nanoframes to further enhance the catalytic activity of Pd nanoframes toward Suzuki coupling reactions.


2014 ◽  
Vol 16 (23) ◽  
pp. 11178-11181 ◽  
Author(s):  
Hua Yuan ◽  
Hongyang Liu ◽  
Bingsen Zhang ◽  
Liyun Zhang ◽  
Haihua Wang ◽  
...  

A Pd/CNT-SiC monolith prepared by a simple two-step method exhibits robust catalytic activity and recycling ability in Suzuki coupling reactions.


Synlett ◽  
2018 ◽  
Vol 29 (06) ◽  
pp. 717-722 ◽  
Author(s):  
Teruyuki Kondo ◽  
Ryosuke Taniguchi ◽  
Yu Kimura

Ru3(CO)12-catalyzed divergent ring-opening coupling reactions of a cyclopropenone with methyl acrylate (an electron-deficient alkene) are developed. Under an argon atmosphere, a decarbonylative linear codimer is obtained, while cyclopentenones are obtained under carbon monoxide (20 atm) without decarbonylation. While ruthenium complexes show no catalytic activity for the ring-opening cocyclization of cyclopropenones with ethylene (20 atm) or bicyclo[2.2.1]hept-2-ene (2-norbornene), rhodium complexes, especially [RhCl(η4-1,5-cod)]2, show high catalytic activity for the desired cocyclization reactions to give the corresponding cyclopentenones in high yields and selectivities. In addition, [RhCl(η4-1,5-cod)]2 realizes the catalytic ring-opening co­cyclization of cyclopropenones with internal alkynes to give the corresponding cyclopentadienones. In all these reactions, ruthena- or rhodacyclobutenones are considered to be key intermediates, generated by strain-driven oxidative addition of a cyclopropenone C–C bond to an ­active ruthenium or rhodium species.


2021 ◽  
Author(s):  
Jianguo liu ◽  
Jiangmin Sun ◽  
Longlong Ma

The development of high efficiency, excellent selectivity, and super activity metal catalyst for chemical selective hydrogenation of alkynes to olefin is of great significance in the field of the chemical industry. At the same time, the development of a large number of available base metal catalysts for organic conversion remains an important objective of chemical research. Herein, we report a facile preparation of a simple, high catalytic activity, environmentally friendly, and inexpensive biomass carbon material supported nano-nickel catalyst from lignin residue. The entire preparation process of the catalyst is simple, reliable, economical, and environmentally friendly, which provides a potential utilization prospect for large-scale industrial applications of biomass-based carbon material catalysts. Biomass-based lignin residues can not only reduce the high oxidation state of nickel ions into nickel nanoparticles by the in-situ reducing gas generated during the calcination process, but the mesoporous structure of lignin residue also promotes the adsorption of nickel metal, which greatly improved the catalytic activity of biomass-based Ni-based catalysts. The simple synthetic green, cost-effective and sustainable biomass-based Ni-based catalyst shows good performance in the selective hydrogenation of phenylacetylene, reaching 97.2% conversion and 84.3% styrene selectivity, respectively.


Sign in / Sign up

Export Citation Format

Share Document