Manipulation of 2D carbon nanoplates with a core–shell structure for high-performance potassium-ion batteries

2019 ◽  
Vol 7 (34) ◽  
pp. 19929-19938 ◽  
Author(s):  
Dongjun Li ◽  
Xiaolong Cheng ◽  
Rui Xu ◽  
Ying Wu ◽  
Xuefeng Zhou ◽  
...  

Quasi-2D core–shell amorphous carbon/graphitic carbon nanoplates (AC@GC) are designed, and they exhibit synergistic properties that enable the construction of superior K-ion batteries.

Author(s):  
Yaya Yuan ◽  
Yaqun Wang ◽  
Gui-lin Zhuang ◽  
Fenglei Yang ◽  
Qiu-Yan Li ◽  
...  

Improving the separation efficiency of photogenerated carriers and exposing more active sites are two important factors to improve photocatalytic efficiency of photocatalyst. Designing appropriate materials with special structure and composition...


2017 ◽  
Vol 10 (05) ◽  
pp. 1750056 ◽  
Author(s):  
Huiping Shao ◽  
Jiangcong Qi ◽  
Tao Lin ◽  
Yuling Zhou ◽  
Fucheng Yu

The core–shell structure composite magnetic nanoparticles (NPs), Fe3O4@chitosan@nimodipine (Fe3O4@CS@NMDP), were successfully synthesized by a chemical cross-linking method in this paper. NMDP is widely used for cardiovascular and cerebrovascular disease prevention and treatment, while CS is of biocompatibility. The composite particles were characterized by an X-ray diffractometer (XRD), a Fourier transform infrared spectroscopy (FT-IR), a transmission electron microscopy (TEM), a vibrating sample magnetometers (VSM) and a high performance liquid chromatography (HPLC). The results show that the size of the core–shell structure composite particles is ranging from 12[Formula: see text]nm to 20[Formula: see text]nm and the coating thickness of NMDP is about 2[Formula: see text]nm. The saturation magnetization of core–shell composite NPs is 46.7[Formula: see text]emu/g, which indicates a good potential application for treating cancer by magnetic target delivery. The release percentage of the NMDP can reach 57.6% in a short time of 20[Formula: see text]min in the PBS, and to 100% in a time of 60[Formula: see text]min, which indicates the availability of Fe3O4@CS@NMDP composite NPs for targeting delivery treatment.


Catalysts ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1007
Author(s):  
Martyna Baca ◽  
Małgorzata Aleksandrzak ◽  
Ewa Mijowska ◽  
Ryszard J. Kaleńczuk ◽  
Beata Zielińska

Spherical photocatalyst based on ordered mesoporous carbon and graphitic carbon nitride with core/shell structure (CS/GCN) was successfully synthesized via facile electrostatic self-assembly strategy. The photocatalytic properties of the hybrid were evaluated by the decomposition of Acid Red 18 under simulated solar light irradiation in comparison to the bulk graphitic carbon nitride (GCN). The results clearly revealed that coupling of carbon nitride with mesoporous carbon allows the catalyst to form with superior photocatalytic performance. The photoactivity of CS/GCN was over nine times higher than that of pristine GCN. Introducing mesoporous carbon into GCN induced higher surface area of the heterojunction and also facilitated the contact surface between the two phases. The synergistic effect between those two components enhanced the visible light-harvesting efficiency and improved photoinduced charge carrier generation, and consequently their proper separation. The electrochemical behavior of the obtained composite was also evaluated by electrochemical impedance, transient photocurrent response and linear sweep potentiometry measurements. The results confirmed that transport and separation of charge carriers in the hybrid was enhanced in comparison to the reference bulk graphitic carbon nitride. Detailed electrochemical, photoluminescence and radical scavenger tests enabled determination of the possible mechanism of photocatalytic process. This work presents new insights to design a core/shell hybrid through the simple preparation process, which can be successfully used as an efficient photocatalyst for the treatment of wastewater containing dyes under solar light irradiation.


Sign in / Sign up

Export Citation Format

Share Document