A highly sensitive and stress-direction-recognizing asterisk-shaped carbon nanotube strain sensor

2019 ◽  
Vol 7 (31) ◽  
pp. 9504-9512 ◽  
Author(s):  
Giheon Choi ◽  
Hayeong Jang ◽  
Seungtaek Oh ◽  
Hyewon Cho ◽  
Heemang Yoo ◽  
...  

Asterisk-shaped strain sensors have the recognizabilities of stress degree and direction to overcome the shortcomings of existing strain sensors.

Nanoscale ◽  
2019 ◽  
Vol 11 (13) ◽  
pp. 5884-5890 ◽  
Author(s):  
Zuoli He ◽  
Gengheng Zhou ◽  
Joon-Hyung Byun ◽  
Sang-Kwan Lee ◽  
Moon-Kwang Um ◽  
...  

In this manuscript, we report a novel highly sensitive wearable strain sensor based on a highly stretchable multi-walled carbon nanotube (MWCNT)/Thermoplastic Polyurethane (TPU) fiber obtained via a wet spinning process.


Nanoscale ◽  
2018 ◽  
Vol 10 (28) ◽  
pp. 13599-13606 ◽  
Author(s):  
Binghao Liang ◽  
Zhiqiang Lin ◽  
Wenjun Chen ◽  
Zhongfu He ◽  
Jing Zhong ◽  
...  

A highly stretchable and sensitive strain sensor based on a gradient carbon nanotube was developed. The strain sensors show an unprecedented combination of both high sensitivity (gauge factor = 13.5) and ultra-stretchability (>550%).


Nanoscale ◽  
2018 ◽  
Vol 10 (5) ◽  
pp. 2191-2198 ◽  
Author(s):  
Jun-Hong Pu ◽  
Xiang-Jun Zha ◽  
Min Zhao ◽  
Shengyao Li ◽  
Rui-Ying Bao ◽  
...  

A highly sensitive strain sensor with end-to-end CNT networks and showing a high gauge factor (248) at small strain (5%) is fabricated.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1701
Author(s):  
Ken Suzuki ◽  
Ryohei Nakagawa ◽  
Qinqiang Zhang ◽  
Hideo Miura

In this study, a basic design of area-arrayed graphene nanoribbon (GNR) strain sensors was proposed to realize the next generation of strain sensors. To fabricate the area-arrayed GNRs, a top-down approach was employed, in which GNRs were cut out from a large graphene sheet using an electron beam lithography technique. GNRs with widths of 400 nm, 300 nm, 200 nm, and 50 nm were fabricated, and their current-voltage characteristics were evaluated. The current values of GNRs with widths of 200 nm and above increased linearly with increasing applied voltage, indicating that these GNRs were metallic conductors and a good ohmic junction was formed between graphene and the electrode. There were two types of GNRs with a width of 50 nm, one with a linear current–voltage relationship and the other with a nonlinear one. We evaluated the strain sensitivity of the 50 nm GNR exhibiting metallic conduction by applying a four-point bending test, and found that the gauge factor of this GNR was about 50. Thus, GNRs with a width of about 50 nm can be used to realize a highly sensitive strain sensor.


2018 ◽  
Vol 29 (23) ◽  
pp. 235501 ◽  
Author(s):  
Yang Gao ◽  
Xiaoliang Fang ◽  
Jianping Tan ◽  
Ting Lu ◽  
Likun Pan ◽  
...  

2016 ◽  
Vol 27 (20) ◽  
pp. 205502 ◽  
Author(s):  
Youngsup Song ◽  
Jae-Ik Lee ◽  
Soonjae Pyo ◽  
Youngkee Eun ◽  
Jungwook Choi ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Wei Qiu ◽  
Shi-Lei Li ◽  
Wei-lin Deng ◽  
Di Gao ◽  
Yi-Lan Kang

A strain sensor composed of carbon nanotubes with Raman spectroscopy can achieve measurement of the three in-plane strain components in microscale. Based on previous work on the mathematic model of carbon nanotube strain sensors, this paper presents a detailed study on the optimization, diversification, and standardization of a CNT strain sensor from the viewpoint of metrology. A new miniaccessory for polarization control is designed, and two different preparing methods for CNT films as sensing media are introduced to provide diversified choices for applications. Then, the standard procedure of creating CNT strain sensors is proposed. Application experiments confirmed the effectiveness of the above improvement, which is helpful in developing this method for convenient metrology.


Sign in / Sign up

Export Citation Format

Share Document