A highly sensitive flexible strain sensor based on the contact resistance change of carbon nanotube bundles

2016 ◽  
Vol 27 (20) ◽  
pp. 205502 ◽  
Author(s):  
Youngsup Song ◽  
Jae-Ik Lee ◽  
Soonjae Pyo ◽  
Youngkee Eun ◽  
Jungwook Choi ◽  
...  
2010 ◽  
Author(s):  
Jin-Ho Kim ◽  
Young-Ju Kim ◽  
Woon Kyung Baek ◽  
Kwon Taek Lim ◽  
Inpil Kang

Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2901
Author(s):  
Peng Zhang ◽  
Yucheng Chen ◽  
Yuxia Li ◽  
Yao Zhang ◽  
Jian Zhang ◽  
...  

The authors wish to make the following corrections to this paper [...]


Carbon ◽  
2020 ◽  
Vol 166 ◽  
pp. 316-327
Author(s):  
Jinglong Xu ◽  
Huatao Wang ◽  
Tingyu Ma ◽  
Yajin Wu ◽  
Rui Xue ◽  
...  

Author(s):  
Mohammed Al-Rubaiai ◽  
Ryohei Tsuruta ◽  
Taewoo Nam ◽  
Umesh Gandhi ◽  
Xiaobo Tan

Abstract Inflatable structures provide significant volume and weight savings for future space and soft robotic applications. Structural health monitoring (SHM) of these structures is essential to ensuring safe operation, providing early warnings of damage, and measuring structural changes over time. In this paper, we propose the design of a single flexible strain sensor for distributed monitoring of an inflatable tube, in particular, the detection and localization of a kink should that occur. Several commercially available conductive materials, including 3D-printing filaments, conductive paint, and conductive fabrics are explored for their strain-sensing performance, where the resistance change under uniaxial tension is measured, and the corresponding gauge factor (GF) is characterized. Flexible strain sensors are then fabricated and integrated with an inflatable structure fabric using screen-printing or 3D-printing techniques, depending on the nature of the raw conductive material. Among the tested materials, the conductive paint shows the highest stability, with GF of 15 and working strain range of 2.28%. Finally, the geometry of the sensor is designed to enable distributed monitoring of an inflatable tube. In particular, for a given deformation magnitude, the sensor output shows a monotonic relationship with the location where the deformation is applied, thus enabling the monitoring of the entire tube with a single sensor.


Nanoscale ◽  
2019 ◽  
Vol 11 (13) ◽  
pp. 5884-5890 ◽  
Author(s):  
Zuoli He ◽  
Gengheng Zhou ◽  
Joon-Hyung Byun ◽  
Sang-Kwan Lee ◽  
Moon-Kwang Um ◽  
...  

In this manuscript, we report a novel highly sensitive wearable strain sensor based on a highly stretchable multi-walled carbon nanotube (MWCNT)/Thermoplastic Polyurethane (TPU) fiber obtained via a wet spinning process.


2011 ◽  
Vol 483 ◽  
pp. 537-541 ◽  
Author(s):  
Zhi Feng Wang ◽  
Ji Min Yang ◽  
Xiong Ying Ye ◽  
Li Tao Liu ◽  
Xu Ming Xie

Carbon nanotube (CNT) filled polymer nanocomposites are increasingly regarded as a realistic alternative to conventional smart materials. In this paper, we studied the contact and bulk piezoresistive properties of multi-walled carbon nanotube/styrene butadiene styrene (MWNT/SBS) composite. Measurements of resistance change under pressure utilizing an Au plate PCB electrode and a sputtered Au layer electrode for same samples were implemented to examine bulk piezoresistivity of the composites and the influence of contact resistance. The results showed that the contact resistance responses to stress for separated electrodes are more remarkable than bulk resistance responses in the MWNT/SBS composite films, but not so stable.


Sign in / Sign up

Export Citation Format

Share Document