Proton conduction studies on four porous and nonporous coordination polymers with different acidities and water uptake

CrystEngComm ◽  
2020 ◽  
Vol 22 (41) ◽  
pp. 6935-6946 ◽  
Author(s):  
Houting Liu ◽  
Rongyun Li ◽  
Jing Lu ◽  
Zhiliang Liu ◽  
Suna Wang ◽  
...  

Acidity and water absorption ability are important influencing factors on proton conducting behavior, which are determined by the protonation degree and amount of hydrophilic groups in the crystal structures, respectively.

2016 ◽  
Vol 45 (39) ◽  
pp. 15399-15405 ◽  
Author(s):  
Ryuta Ishikawa ◽  
Shunya Ueno ◽  
Sadahiro Yagishita ◽  
Hitoshi Kumagai ◽  
Brian K. Breedlove ◽  
...  

The proton conducting properties of two different structural types of porous coordination polymers [La2(ox)3(H2O)6]·4H2O (1) and [Er2(ox)3(H2O)6]·12H2O (2), where ox2− = oxalate, were investigated.


RSC Advances ◽  
2021 ◽  
Vol 11 (19) ◽  
pp. 11495-11499
Author(s):  
Lu Feng ◽  
Tian-Yu Zeng ◽  
Hao-Bo Hou ◽  
Hong Zhou ◽  
Jian Tian

A water-mediated proton-conducting Eu(iii)-MOF has been synthesized, which provides a stable proton transport channel that was confirmed by theoretical calculation.


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 133-143 ◽  
Author(s):  
Tuffaha Fathe Salem ◽  
Seha Tirkes ◽  
Alinda Oyku Akar ◽  
Umit Tayfun

AbstractChopped jute fiber (JF) surfaces were modified using alkaline, silane and eco-grade epoxy resin. Surface characteristics of jute fibers were confirmed by FTIR and EDX analyses. JF filled polyurethane elastomer (TPU) composites were prepared via extrusion process. The effect of surface modifications of JF on mechanical, thermo-mechanical, melt-flow, water uptake and morphological properties of TPU-based eco-composites were investigated by tensile and hardness tests, dynamic mechanical analysis (DMA), melt flow index (MFI) test, water absorption measurements and scanning electron microscopy (SEM) techniques, respectively. Mechanical test results showed that silane and epoxy treated JF additions led to increase in tensile strength, modulus and hardness of TPU. Glass transition temperature (Tg) of TPU rose up to higher values after JF inclusions regardless of treatment type. Si-JF filled TPU exhibited the lowest water absorption among composites. Surface treated JFs displayed homogeneous dispersion into TPU and their surface were covered by TPU according to SEM micro-photographs.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1261
Author(s):  
Catarina S. P. Borges ◽  
Alireza Akhavan-Safar ◽  
Eduardo A. S. Marques ◽  
Ricardo J. C. Carbas ◽  
Christoph Ueffing ◽  
...  

Short fiber reinforced polymers are widely used in the construction of electronic housings, where they are often exposed to harsh environmental conditions. The main purpose of this work is the in-depth study and characterization of the water uptake behavior of PBT-GF30 (polybutylene terephthalate with 30% of short glass fiber)as well as its consequent effect on the mechanical properties of the material. Further analysis was conducted to determine at which temperature range PBT-GF30 starts experiencing chemical changes. The influence of testing procedures and conditions on the evaluation of these effects was analyzed, also drawing comparisons with previous studies. The water absorption behavior was studied through gravimetric tests at 35, 70, and 130 °C. Fiber-free PBT was also studied at 35 °C for comparison purposes. The effect of water and temperature on the mechanical properties was analyzed through bulk tensile tests. The material was tested for the three temperatures in the as-supplied state (without drying or aging). Afterwards, PBT-GF30 was tested at room temperature following water immersion at the three temperatures. Chemical changes in the material were also analyzed through Fourier-transform infrared spectroscopy (FTIR). It was concluded that the water diffusion behavior is Fickian and that PBT absorbs more water than PBT-GF30 but at a slightly higher rate. However, temperature was found to have a more significant influence on the rate of water diffusion of PBT-GF30 than fiber content did. Temperature has a significant influence on the mechanical properties of the material. Humidity contributes to a slight drop in stiffness and strength, not showing a clear dependence on water uptake. This decrease in mechanical properties occurs due to the relaxation of the polymeric chain promoted by water ingress. Between 80 and 85 °C, after water immersion, the FTIR profile of the material changes, which suggests chemical changes in the PBT. The water absorption was simulated through heat transfer analogy with good results. From the developed numerical simulation, the minimum plate size to maintain the water ingress unidirectional was 30 mm, which was validated experimentally.


Sign in / Sign up

Export Citation Format

Share Document