scholarly journals Enhancement of mechanical, thermal and water uptake performance of TPU/jute fiber green composites via chemical treatments on fiber surface

e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 133-143 ◽  
Author(s):  
Tuffaha Fathe Salem ◽  
Seha Tirkes ◽  
Alinda Oyku Akar ◽  
Umit Tayfun

AbstractChopped jute fiber (JF) surfaces were modified using alkaline, silane and eco-grade epoxy resin. Surface characteristics of jute fibers were confirmed by FTIR and EDX analyses. JF filled polyurethane elastomer (TPU) composites were prepared via extrusion process. The effect of surface modifications of JF on mechanical, thermo-mechanical, melt-flow, water uptake and morphological properties of TPU-based eco-composites were investigated by tensile and hardness tests, dynamic mechanical analysis (DMA), melt flow index (MFI) test, water absorption measurements and scanning electron microscopy (SEM) techniques, respectively. Mechanical test results showed that silane and epoxy treated JF additions led to increase in tensile strength, modulus and hardness of TPU. Glass transition temperature (Tg) of TPU rose up to higher values after JF inclusions regardless of treatment type. Si-JF filled TPU exhibited the lowest water absorption among composites. Surface treated JFs displayed homogeneous dispersion into TPU and their surface were covered by TPU according to SEM micro-photographs.

Author(s):  
Ibrahim Hamarat ◽  
Emel Kuram ◽  
Babur Ozcelik

In this study, acrylonitrile butadiene styrene polymer was exposed to 12 injection cycles to investigate the influence of recycling number on the mechanical, rheological, and morphological properties. Also, binary and ternary blends including different weight percentages and recycling number of virgin–recycled polymers were prepared. A slight decrement was found in the tensile strength values with recycling number. All blends including recycled polymer (binary or ternary) gave lower tensile strength values with respect to 100% virgin polymer. Strain at break value was decreased after twelve times recycling; however, no clear tendency was observed with the presence of different ratios of virgin polymer to recycled polymer. Impact strength of the polymer decreased with recycling number. There was relatively large drop in the third recycling, from 72 kJ/m2 to 38.5 kJ/m2; however, further recycling induced in a slower drop in the impact strength to 32.5 kJ/m2. All blends including recycled material gave lower impact strength values as compared to 100% virgin polymer. It was observed that the melt flow index values increased with the recycling number, a total of 26.53% after twelve times recycling. All blends containing recycled material showed higher melt flow index values as compared to 100% virgin polymer.


Author(s):  
Emel Kuram

In this study, the ageing behaviour of glass-fibre-reinforced poly(oxymethylene) composite at different conditions was investigated. The ageing was performed in various controlled environments, namely in air at room temperature, in water at room temperature and in an oven at the temperature of 100 ℃. Tensile and flexural tests were conducted to determine the mechanical properties, melt flow index was measured to determine the rheological property and scanning electron microscopy was used to observe the morphological property of unaged and aged poly(oxymethylene) samples. A reduction in both tensile and flexural strength was observed with all ageing environment. The worst strength retention was obtained with water ageing. Water absorbed by glass-fibre-reinforced poly(oxymethylene) composite had a detrimental influence on the tensile and flexural strength. Tensile strength was affected by the ageing environments. The decrease in the tensile strength of air and thermally aged poly(oxymethylene) was slower than that of water aged poly(oxymethylene), and the tensile strength of aged samples decreased as the ageing time increased. The combined actions of heat, air and water (thermal + water + air ageing) did not further degrade glass-fibre-reinforced poly(oxymethylene) compared to only water ageing at the room temperature. All tensile stress–strain and flexural load–deflection curves showed the similar tendency and did not change with ageing environments and time. All aged samples showed higher melt flow index values than that of unaged sample and the changes in melt flow index could be an indicator of degradation.


2018 ◽  
Vol 381 (1) ◽  
pp. 1800127 ◽  
Author(s):  
Viviane A. Escocio ◽  
Leila L. Y. Visconte ◽  
Ana L. da Silva Nazareth ◽  
Ana M. F. de Sousa ◽  
Elen B. A. V. Pacheco

2012 ◽  
Vol 487 ◽  
pp. 644-648
Author(s):  
Yuan Liu ◽  
Lin Wang ◽  
Qing Yan Xu ◽  
Pei Jie Lin ◽  
Zhi Hong Guo ◽  
...  

Melt-blown generated PBT nonwoven fabrics usually have small fibril diameter, high flexibility, well heat and oil resistance. Therefore, they would have promising application such as vehicle filtering media. The rheological behavior of PBT with High Melt Flow Index for Melt-blown is investigated in this paper. It is a direction of the technology design and fabrication parameters .The relation of apparent viscosity and shear rate is analyzed, as well as flow activation energy and Non-Newtonian indexes. The results suggest that PBT with High Melt Flow Index is Non-Newtonian fluid. Apparent viscosity and flow activation energy show gradually decrease with increasing shear rate, exhibiting typical shear-thinning behavior.


1983 ◽  
Vol 22 (1) ◽  
pp. 90-101 ◽  
Author(s):  
A. V. Shenoy ◽  
S. Chattopadhyay ◽  
V. M. Nadkarni
Keyword(s):  

2020 ◽  
pp. 089270572092513 ◽  
Author(s):  
Sudhir Kumar ◽  
Rupinder Singh ◽  
TP Singh ◽  
Ajay Batish

This article reports the comparison for mechanical and morphological properties of 3-D printed tensile specimen with fused deposition modeling by using multiblended and hybrid blended polylactic acid (PLA) matrix. The multiblended PLA matrix was 3-D printed as tensile specimen (as per American Society for Testing and Materials 638 type IV) comprising of 06 layers (01 layer PLA + 01 layer of PLA + polyvinyl chloride + 02 layers of PLA + wood powder + 02 layers of PLA + Fe3O4) each with layer thickness of 0.53 mm. The hybrid blended PLA matrix was also 3-D printed with similar dimensions and printing conditions. The composition/proportion of hybrid blended and multimaterial blended matrix has been selected on the basis of similar melt flow index (MFI) range and the final matrix was compared on basis of equal number of layers (06), similar rheological range (MFI: 40–45 g/10 min) and volume of product (same dimension of prototype). The results of study suggested that the 3-D printed functional prototype of multiblended PLA matrix has better mechanical and morphological properties than hybrid blended PLA matrix. The peak strength and break strength of hybrid blend-based prototype were observed to be 29.56 MPa and 26.60 MPa, respectively, whereas for the multimaterial-based functional prototypes, it was 46.28 MPa and 41.65 MPa, respectively. The results are also supported with scanning electron microscopy-based images, 3-D rendered images, and energy-dispersive X-ray analysis analysis.


Author(s):  
Rupinder Singh ◽  
Gurchetan Singh ◽  
Jaskaran Singh ◽  
Ranvijay Kumar ◽  
Md Mustafizur Rahman ◽  
...  

In this experimental study, a composite of poly-ether-ketone-ketone by reinforcement of hydroxyapatite and chitosan has been prepared for possible applications as orthopaedic scaffolds. Initially, different weight percentages of hydroxyapatite and chitosan were reinforced in the poly-ether-ketone-ketone matrix and tested for melt flow index in order to check the flowability of different compositions/proportions. Suitable compositions revealed by the melt flow index test were then taken forward for the extrusion of filament required for fused deposition modelling. For thermomechanical investigations, Taguchi-based design of experiments has been used with input variables in the extrusion process as follows: temperature, load applied and different composition/proportions. The specimens in the form of feedstock filament produced by the extrusion process were made to undergo tensile testing. The specimens were also inspected by differential scanning calorimetry and photomicrographs. Finally, the specimen showing the best performance from the thermomechanical viewpoint has been selected to extrude the filament for the fused deposition modelling process.


Sign in / Sign up

Export Citation Format

Share Document