Modulation of crystal growth and structure within cerium-based metal–organic frameworks

CrystEngComm ◽  
2020 ◽  
Vol 22 (47) ◽  
pp. 8182-8188
Author(s):  
Megan C. Wasson ◽  
Ken-ichi Otake ◽  
Xinyi Gong ◽  
Annabella R. Strathman ◽  
Timur Islamoglu ◽  
...  

Cerium-based metal–organic frameworks' crystal growth and structure dictated using modulating monocarboxylate species.

2021 ◽  
Author(s):  
Fajar Inggit Pambudi ◽  
Michael William Anderson ◽  
Martin Attfield

Atomic force microscopy has been used to determine the surface crystal growth of two isostructural metal-organic frameworks, [Zn2(ndc)2(dabco)] (ndc = 1,4-naphthalene dicarboxylate, dabco = 4-diazabicyclo[2.2.2]octane) (1) and [Cu2(ndc)2(dabco)] (2) from...


CrystEngComm ◽  
2012 ◽  
Vol 14 (8) ◽  
pp. 2635 ◽  
Author(s):  
Beatriz Gil-Hernández ◽  
Jana K. Maclaren ◽  
Henning A. Höppe ◽  
Jorge Pasán ◽  
Joaquín Sanchiz ◽  
...  

ChemInform ◽  
2012 ◽  
Vol 43 (23) ◽  
pp. no-no
Author(s):  
Martin P. Attfield ◽  
Pablo Cubillas

2017 ◽  
Vol 354 ◽  
pp. 84-91 ◽  
Author(s):  
Somboon Chaemchuen ◽  
Zhixiong Luo ◽  
Kui Zhou ◽  
Bibimaryam Mousavi ◽  
Suphot Phatanasri ◽  
...  

2020 ◽  
Author(s):  
Stephen Shearan ◽  
Jannick Jacobsen ◽  
Ferdinando Costantino ◽  
Roberto D’Amato ◽  
Dmitri Novikov ◽  
...  

We report on the results of a thorough <i>in situ</i> synchrotron powder X-ray diffraction study of the crystallisation in aqueous medium of two recently discovered perfluorinated Ce(IV)-based metal-organic frameworks (MOFs), analogues of the already well investigated Zr(IV)-based UiO-66 and MIL-140A, namely, F4_UiO-66(Ce) and F4_MIL-140A(Ce). The two MOFs were originally obtained in pure form in similar conditions, using ammonium cerium nitrate and tetrafluoroterephthalic acid as building blocks, and small variations of the reaction parameters were found to yield mixed phases. Here, we investigate the crystallisation of these compounds <i>in situ</i> in a wide range of conditions, varying parameters such as temperature, amount of the protonation modulator nitric acid (HNO<sub>3</sub>) and amount of the coordination modulator acetic acid (AcOH). When only HNO<sub>3</sub> is present in the reaction environment, F4_MIL-140A(Ce) is obtained as a pure phase. Heating preferentially accelerates nucleation, which becomes rate determining below 57 °C, whereas the modulator influences nucleation and crystal growth to a similar extent. Upon addition of AcOH to the system, alongside HNO<sub>3</sub>, mixed-phased products, consisting of F4_MIL-140A(Ce) and F4_UiO-66(Ce), are obtained. In these conditions, F4_UiO-66(Ce) is always formed faster and no interconversion between the two phases occurs. In the case of F4_UiO-66(Ce), crystal growth is always the rate determining step. An increase in the amount of HNO<sub>3</sub> slows down both nucleation and growth rates for F4_MIL-140A(Ce), whereas nucleation is mainly affected for F4_UiO-66(Ce). In addition, a higher amount HNO<sub>3</sub> favours the formation of F4_MIL-140A(Ce). Similarly, increasing the amount of AcOH leads to slowing down of the nucleation and growth rate, but favours the formation of F4_UiO-66(Ce). The pure F4_UiO-66(Ce) phase could also be obtained when using larger amounts of AcOH in the presence of minimal HNO<sub>3</sub>. Based on these <i>in situ</i> results, a new optimised route to achieving a pure, high quality F4_MIL-140A(Ce) phase in mild conditions (60 °C, 1 h) is also identified.


2019 ◽  
Vol 132 (6) ◽  
pp. 2478-2485
Author(s):  
Hang Li ◽  
Fanchen Meng ◽  
Suoying Zhang ◽  
Liguang Wang ◽  
Matthew Li ◽  
...  

2020 ◽  
Author(s):  
Duncan Johnstone ◽  
Francesca Firth ◽  
Clare P. Grey ◽  
Paul A. Midgley ◽  
Matthew Cliffe ◽  
...  

<p>Defect engineering can enhance key properties of metal-organic frameworks (MOFs). Tailoring the distribution of defects, for example in correlated nanodomains, requires characterization across length scales. However, a critical nanoscale characterization gap has emerged between the bulk diffraction techniques used to detect defect nanodomains and the sub-nanometre imaging used to observe individual defects. Here, we demonstrate that the emerging technique of scanning electron diffraction (SED) can bridge this gap. We directly image defect nanodomains in the MOF UiO-66(Hf) over an area of ca. 1 000 nm and with a spatial resolution ca. 5 nm to reveal domain morphology and distribution. Based on these observations, we suggest possible crystal growth processes underpinning synthetic control of defect nanodomains. We also identify likely dislocations and small angle grain boundaries, illustrating that SED could be a key technique in developing the potential for engineering the distribution of defects, or “microstructure”, in functional MOF design.</p>


2020 ◽  
Author(s):  
Duncan Johnstone ◽  
Francesca Firth ◽  
Clare P. Grey ◽  
Paul A. Midgley ◽  
Matthew Cliffe ◽  
...  

<p>Defect engineering can enhance key properties of metal-organic frameworks (MOFs). Tailoring the distribution of defects, for example in correlated nanodomains, requires characterization across length scales. However, a critical nanoscale characterization gap has emerged between the bulk diffraction techniques used to detect defect nanodomains and the sub-nanometre imaging used to observe individual defects. Here, we demonstrate that the emerging technique of scanning electron diffraction (SED) can bridge this gap. We directly image defect nanodomains in the MOF UiO-66(Hf) over an area of ca. 1 000 nm and with a spatial resolution ca. 5 nm to reveal domain morphology and distribution. Based on these observations, we suggest possible crystal growth processes underpinning synthetic control of defect nanodomains. We also identify likely dislocations and small angle grain boundaries, illustrating that SED could be a key technique in developing the potential for engineering the distribution of defects, or “microstructure”, in functional MOF design.</p>


2012 ◽  
Vol 48 (88) ◽  
pp. 10847 ◽  
Author(s):  
Woo Ram Lee ◽  
Dae Won Ryu ◽  
Won Ju Phang ◽  
Ji Hye Park ◽  
Chang Seop Hong

2015 ◽  
Vol 51 (46) ◽  
pp. 9479-9482 ◽  
Author(s):  
Jun Zhao ◽  
Yenan Wang ◽  
Wenwen Dong ◽  
Yapan Wu ◽  
Dongsheng Li ◽  
...  

Surfactant-directed crystal growth can effectively separate mixed-phase crystals. By introducing different surfactants, two previous mixed-phase Ni(ii)–MOFs constructed from an undeveloped pyridyl-tetracarboxylate and Ni(ii) salts were successfully isolated to obtain two pure products.


Sign in / Sign up

Export Citation Format

Share Document