scholarly journals Grand canonical simulations of ions between charged conducting surfaces using exact 3D Ewald summations

2020 ◽  
Vol 22 (24) ◽  
pp. 13659-13665 ◽  
Author(s):  
Samuel Stenberg ◽  
Björn Stenqvist ◽  
Cliff Woodward ◽  
Jan Forsman
Keyword(s):  

We present a useful methodology to simulate ionic fluids confined by two charged and perfectly conducting surfaces.

Author(s):  
Michael P. Allen ◽  
Dominic J. Tildesley

This chapter contains the essential statistical mechanics required to understand the inner workings of, and interpretation of results from, computer simulations. The microcanonical, canonical, isothermal–isobaric, semigrand and grand canonical ensembles are defined. Thermodynamic, structural, and dynamical properties of simple and complex liquids are related to appropriate functions of molecular positions and velocities. A number of important thermodynamic properties are defined in terms of fluctuations in these ensembles. The effect of the inclusion of hard constraints in the underlying potential model on the calculated properties is considered, and the addition of long-range and quantum corrections to classical simulations is presented. The extension of statistical mechanics to describe inhomogeneous systems such as the planar gas–liquid interface, fluid membranes, and liquid crystals, and its application in the simulation of these systems, are discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jing Zhang ◽  
Jiren Wang ◽  
Chunhua Zhang ◽  
Zongxiang Li ◽  
Jinchao Zhu ◽  
...  

AbstractTo study the adsorption characteristics of CO, CO2, N2, O2, and their binary-components in lignite coal, reveal the influence of CO2 or N2 injection and air leakage on the desorption of CO in goafs, a lignite model (C206H206N2O44) was established, and the supercell structure was optimized under temperatures of 288.15–318.15 K for molecular simulation. Based on molecular dynamics, the Grand Canonical Monte Carlo method was used to simulate the adsorption characteristics and the Langmuir equation was used to fit the adsorption isotherms of gases. The results show that for single-components, the order of adsorption capacity is CO2 > CO > O2 > N2. For binary-components, the competitive adsorption capacities of CO2 and CO are approximate. In the low-pressure zone, the competitive adsorption capacity of CO2 is stronger than that of CO, and the CO is stronger than N2 or O2. From the simulation, it can be seen that CO2, N2 or O2 will occupy adsorption sites, causing CO desorption. Therefore, to prevent the desorption of the original CO in the goaf, it is not suitable to use CO2 or N2 injection for fire prevention, and the air leakage at the working faces need to be controlled.


AIP Advances ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 045306
Author(s):  
Georg Daniel Förster ◽  
Thomas D. Swinburne ◽  
Hua Jiang ◽  
Esko Kauppinen ◽  
Christophe Bichara

2020 ◽  
Vol 6 (2) ◽  
pp. 20
Author(s):  
Maxim N. Popov ◽  
Thomas Dengg ◽  
Dominik Gehringer ◽  
David Holec

In this paper, we report the results of hydrogen adsorption properties of a new 2D carbon-based material, consisting of pentagons and octagons (Penta-Octa-Penta-graphene or POP-graphene), based on the Grand-Canonical Monte Carlo simulations. The new material exhibits a moderately higher gravimetric uptake at cryogenic temperatures (77 K), as compared to the regular graphene. We discuss the origin of the enhanced uptake of POP-graphene and offer a consistent explanation.


Sign in / Sign up

Export Citation Format

Share Document