scholarly journals Redox potentials along the redox-active low-barrier H-bonds in electron transfer pathways

2020 ◽  
Vol 22 (44) ◽  
pp. 25467-25473 ◽  
Author(s):  
Keisuke Saito ◽  
Manoj Mandal ◽  
Hiroshi Ishikita

Local proton transfer along redox-active low-barrier H-bonds can alter the driving force or electronic coupling for electron transfer, as the redox potential values depend on the H+ position in low-barrier H-bonds.

2012 ◽  
Vol 78 (19) ◽  
pp. 6987-6995 ◽  
Author(s):  
Misha G. Mehta-Kolte ◽  
Daniel R. Bond

ABSTRACTThe current understanding of dissimilatory metal reduction is based primarily on isolates from the proteobacterial generaGeobacterandShewanella. However, environments undergoing active Fe(III) reduction often harbor less-well-studied phyla that are equally abundant. In this work, electrochemical techniques were used to analyze respiratory electron transfer by the only known Fe(III)-reducing representative of theAcidobacteria,Geothrix fermentans. In contrast to previously characterized metal-reducing bacteria, which typically reach maximal rates of respiration at electron acceptor potentials of 0 V versus standard hydrogen electrode (SHE),G. fermentansrequired potentials as high as 0.55 V to respire at its maximum rate. In addition,G. fermentanssecreted two different soluble redox-active electron shuttles with separate redox potentials (−0.2 V and 0.3 V). The compound with the lower midpoint potential, responsible for 20 to 30% of electron transfer activity, was riboflavin. The behavior of the higher-potential compound was consistent with hydrophilic UV-fluorescent molecules previously found inG. fermentanssupernatants. Both electron shuttles were also produced when cultures were grown with Fe(III), but not when fumarate was the electron acceptor. This study reveals thatGeothrixis able to take advantage of higher-redox-potential environments, demonstrates that secretion of flavin-based shuttles is not confined toShewanella, and points to the existence of high-potential-redox-active compounds involved in extracellular electron transfer. Based on differences between the respiratory strategies ofGeothrixandGeobacter, these two groups of bacteria could exist in distinctive environmental niches defined by redox potential.


Author(s):  
Jingtao Duan ◽  
Zhiyuan Xu ◽  
Zhen Yang ◽  
Jie Jiang

Redox-active humic acids (HA) are ubiquitous in terrestrial and aquatic systems and are involved in numerous electron transfer reactions affecting biogeochemical processes and fates of pollutants in soil environments. Redox-active contaminants are trapped in soil micropores (<2 nm) that have limited access to microbes and HA. Therefore, the contaminants whose molecular structure and properties are not damaged accumulate in the soil micropores and become potential pollution sources. Electron transfer capacities (ETC) of HA reflecting redox activities of low molecular weight fraction (LMWF, <2.5) HA can be detected by an electrochemical method, which is related to redox potentials (Eh) in soil and aquatic environments. Nevertheless, electron accepting capacities (EAC) and electron donating capacities (EDC) of these LMWF HA at different Eh are still unknown. EDC and EAC of different molecular weight HA at different Eh were analyzed using electrochemical methods. EAC of LMWF at −0.59 V was 12 times higher than that at −0.49 V, while EAC increased to 2.6 times when the Eh decreased from −0.59 V to −0.69 V. Afterward, LMWF can act as a shuttle to stimulate microbial Fe(III) reduction processes in microbial reduction experiments. Additionally, EAC by electrochemical analysis at a range of −0.49–−0.59 V was comparable to total calculated ETC of different molecular weight fractions of HA by microbial reduction. Therefore, it is indicated that redox-active functional groups that can be reduced at Eh range of −0.49–−0.59 are available to microbial reduction. This finding contributes to a novel perspective in the protection and remediation of the groundwater environment in the biogeochemistry process.


2015 ◽  
Vol 54 (33) ◽  
pp. 9555-9559 ◽  
Author(s):  
Ulises Zitare ◽  
Damián Alvarez-Paggi ◽  
Marcos N. Morgada ◽  
Luciano A. Abriata ◽  
Alejandro J. Vila ◽  
...  

1973 ◽  
Vol 133 (2) ◽  
pp. 283-287 ◽  
Author(s):  
R. J. Kassner ◽  
W. Yang

The two-iron–sulphur co-ordination centre in plant and algal ferredoxins is considered as a collection of charged ions whose net negative charge is twice that of the one-iron–sulphur protein rubredoxin. Calculation of the electrostatic free-energy changes for reduction of the two types of proteins indicates that the redox potential of the two-iron–sulphur proteins should be more negative than that of the one-iron–sulphur protein and that in biological systems the ferredoxins should function as one-electron transfer proteins.


2021 ◽  
Author(s):  
Bertrand Neyhouse ◽  
Alexis Fenton Jr ◽  
Fikile Brushett

<p>Engineering redox-active compounds to support stable multi-electron transfer is an emerging strategy for enhancing the energy density and reducing the cost of redox flow batteries (RFBs). However, when sequential electron transfers occur at disparate redox potentials, increases in electrolyte capacity are accompanied by decreases in voltaic efficiency, restricting the viable design space. To understand these performance tradeoffs for two-electron compounds specifically, we apply theoretical models to investigate the influence of the electron transfer mechanism and redox-active species properties on galvanostatic processes. First, we model chronopotentiometry at a planar electrode to understand how the electrochemical response and associated concentration distributions depend on thermodynamic, kinetic, and mass transport factors. Second, using a zero-dimensional galvanostatic charge / discharge model, we assess the effects of these key descriptors on performance for a single half-cell. Specifically, we examine how different properties (i.e., average of the two redox potentials, difference between the two redox potentials, charging rate, mass transfer rate, and comproportionation rate) affect the electrode polarization and voltaic efficiency. Finally, we extend the galvanostatic model to include two-electron compounds in both half-cells, demonstrating compounding voltage losses for a full cell. These results evince limitations to the applicability of multi-electron compounds—as such, we suggest new directions for molecular and systems engineering that may improve the prospects of these materials within RFBs.<b></b></p>


2021 ◽  
Author(s):  
Komal Joshi ◽  
Chi Ho Chan ◽  
Daniel R. Bond

AbstractGeobacter sulfurreducens utilizes extracellular electron acceptors such as Mn(IV), Fe(III), syntrophic partners, and electrodes that vary from +0.4 to −0.3 V vs. Standard Hydrogen Electrode (SHE), representing a potential energy span that should require a highly branched electron transfer chain. Here we describe CbcBA, a bc-type cytochrome essential near the thermodynamic limit of respiration when acetate is the electron donor. Mutants lacking cbcBA ceased Fe(III) reduction at −0.21 V vs. SHE, could not transfer electrons to electrodes between −0.21 and −0.28 V, and could not reduce the final 10% – 35% of Fe(III) minerals. As redox potential decreased during Fe(III) reduction, cbcBA was induced with the aid of the regulator BccR to become one of the most highly expressed genes in G. sulfurreducens. Growth yield (CFU/mM Fe(II)) was 112% of WT in ΔcbcBA, and deletion of cbcL (a different bc-cytochrome essential near −0.15 V) in ΔcbcBA increased yield to 220%. Together with ImcH, which is required at high redox potentials, CbcBA represents a third cytoplasmic membrane oxidoreductase in G. sulfurreducens. This expanding list shows how these important metal-reducing bacteria may constantly sense redox potential to adjust growth efficiency in changing environments.


Clay Minerals ◽  
1988 ◽  
Vol 23 (3) ◽  
pp. 261-270 ◽  
Author(s):  
H. Graf ◽  
V. Reichenbach ◽  
B. Beyme

AbstractVermiculite prepared from biotite by interlayer cation exchange was reacted with solutions exhibiting redox potentials between 625 and 765 mV. The redox potential was controlled by the Fe2+/Fe3+ activity ratio, measured with a Pt electrode, and kept constant by addition of hydrogen peroxide to balance electron transfer from structural Fe2+ to Fe3+ in solution. Oxidation of structural Fe2+ was followed by Eh-stat titration and the rate of oxidation was shown to depend on the amount of Fe3+ penetrating into interlayer positions. Consequently, it was affected not only by the redox potential, but also by the activity between Fe3+ and all other cations present in solution or in an exchangeable state. Oxidation and cation exchange are coupled reactions. In contrast to the redox potential in solution, the effective redox potential controlling the oxidation of structural Fe2+ was increased by preferential sorption of the Fe3+ ion.


2018 ◽  
Vol 12 (12) ◽  
pp. 2844-2863 ◽  
Author(s):  
Shun’ichi Ishii ◽  
Shino Suzuki ◽  
Aaron Tenney ◽  
Kenneth H. Nealson ◽  
Orianna Bretschger

2021 ◽  
Author(s):  
Bertrand Neyhouse ◽  
Alexis Fenton Jr ◽  
Fikile Brushett

<p>Engineering redox-active compounds to support stable multi-electron transfer is an emerging strategy for enhancing the energy density and reducing the cost of redox flow batteries (RFBs). However, when sequential electron transfers occur at disparate redox potentials, increases in electrolyte capacity are accompanied by decreases in voltaic efficiency, restricting the viable design space. To understand these performance tradeoffs for two-electron compounds specifically, we apply theoretical models to investigate the influence of the electron transfer mechanism and redox-active species properties on galvanostatic processes. First, we model chronopotentiometry at a planar electrode to understand how the electrochemical response and associated concentration distributions depend on thermodynamic, kinetic, and mass transport factors. Second, using a zero-dimensional galvanostatic charge / discharge model, we assess the effects of these key descriptors on performance for a single half-cell. Specifically, we examine how different properties (i.e., average of the two redox potentials, difference between the two redox potentials, charging rate, mass transfer rate, and comproportionation rate) affect the electrode polarization and voltaic efficiency. Finally, we extend the galvanostatic model to include two-electron compounds in both half-cells, demonstrating compounding voltage losses for a full cell. These results evince limitations to the applicability of multi-electron compounds—as such, we suggest new directions for molecular and systems engineering that may improve the prospects of these materials within RFBs.<b></b></p>


Sign in / Sign up

Export Citation Format

Share Document