geothrix fermentans
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 0)

H-INDEX

7
(FIVE YEARS 0)

2015 ◽  
Vol 81 (12) ◽  
pp. 4014-4025 ◽  
Author(s):  
Ashley R. Brown ◽  
Christopher Boothman ◽  
Simon M. Pimblott ◽  
Jonathan R. Lloyd

ABSTRACTMicrobial communities have the potential to control the biogeochemical fate of some radionuclides in contaminated land scenarios or in the vicinity of a geological repository for radioactive waste. However, there have been few studies of ionizing radiation effects on microbial communities in sediment systems. Here, acetate and lactate amended sediment microcosms irradiated with gamma radiation at 0.5 or 30 Gy h−1for 8 weeks all displayed NO3−and Fe(III) reduction, although the rate of Fe(III) reduction was decreased in 30-Gy h−1treatments. These systems were dominated by fermentation processes. Pyrosequencing indicated that the 30-Gy h−1treatment resulted in a community dominated by two Clostridial species. In systems containing no added electron donor, irradiation at either dose rate did not restrict NO3−, Fe(III), or SO42−reduction. Rather, Fe(III) reduction was stimulated in the 0.5-Gy h−1-treated systems. In irradiated systems, there was a relative increase in the proportion of bacteria capable of Fe(III) reduction, withGeothrix fermentansandGeobactersp. identified in the 0.5-Gy h−1and 30-Gy h−1treatments, respectively. These results indicate that biogeochemical processes will likely not be restricted by dose rates in such environments, and electron accepting processes may even be stimulated by radiation.


2012 ◽  
Vol 78 (19) ◽  
pp. 6987-6995 ◽  
Author(s):  
Misha G. Mehta-Kolte ◽  
Daniel R. Bond

ABSTRACTThe current understanding of dissimilatory metal reduction is based primarily on isolates from the proteobacterial generaGeobacterandShewanella. However, environments undergoing active Fe(III) reduction often harbor less-well-studied phyla that are equally abundant. In this work, electrochemical techniques were used to analyze respiratory electron transfer by the only known Fe(III)-reducing representative of theAcidobacteria,Geothrix fermentans. In contrast to previously characterized metal-reducing bacteria, which typically reach maximal rates of respiration at electron acceptor potentials of 0 V versus standard hydrogen electrode (SHE),G. fermentansrequired potentials as high as 0.55 V to respire at its maximum rate. In addition,G. fermentanssecreted two different soluble redox-active electron shuttles with separate redox potentials (−0.2 V and 0.3 V). The compound with the lower midpoint potential, responsible for 20 to 30% of electron transfer activity, was riboflavin. The behavior of the higher-potential compound was consistent with hydrophilic UV-fluorescent molecules previously found inG. fermentanssupernatants. Both electron shuttles were also produced when cultures were grown with Fe(III), but not when fumarate was the electron acceptor. This study reveals thatGeothrixis able to take advantage of higher-redox-potential environments, demonstrates that secretion of flavin-based shuttles is not confined toShewanella, and points to the existence of high-potential-redox-active compounds involved in extracellular electron transfer. Based on differences between the respiratory strategies ofGeothrixandGeobacter, these two groups of bacteria could exist in distinctive environmental niches defined by redox potential.


2006 ◽  
Vol 72 (9) ◽  
pp. 6288-6298 ◽  
Author(s):  
Eoin L. Brodie ◽  
Todd Z. DeSantis ◽  
Dominique C. Joyner ◽  
Seung M. Baek ◽  
Joern T. Larsen ◽  
...  

ABSTRACT Reduction of soluble uranium U(VI) to less-soluble uranium U(IV) is a promising approach to minimize migration from contaminated aquifers. It is generally assumed that, under constant reducing conditions, U(IV) is stable and immobile; however, in a previous study, we documented reoxidation of U(IV) under continuous reducing conditions (Wan et al., Environ. Sci. Technol. 2005, 39:6162-6169). To determine if changes in microbial community composition were a factor in U(IV) reoxidation, we employed a high-density phylogenetic DNA microarray (16S microarray) containing 500,000 probes to monitor changes in bacterial populations during this remediation process. Comparison of the 16S microarray with clone libraries demonstrated successful detection and classification of most clone groups. Analysis of the most dynamic groups of 16S rRNA gene amplicons detected by the 16S microarray identified five clusters of bacterial subfamilies responding in a similar manner. This approach demonstrated that amplicons of known metal-reducing bacteria such as Geothrix fermentans (confirmed by quantitative PCR) and those within the Geobacteraceae were abundant during U(VI) reduction and did not decline during the U(IV) reoxidation phase. Significantly, it appears that the observed reoxidation of uranium under reducing conditions occurred despite elevated microbial activity and the consistent presence of metal-reducing bacteria. High-density phylogenetic microarrays constitute a powerful tool, enabling the detection and monitoring of a substantial portion of the microbial population in a routine, accurate, and reproducible manner.


2005 ◽  
Vol 69 (5) ◽  
pp. 865-875 ◽  
Author(s):  
F. S. Islam ◽  
C. Boothman ◽  
A. G. Gault ◽  
D. A. Polya ◽  
J. R. Lloyd

AbstractPrevious studies from our laboratory have suggested a role for indigenous metal-reducing bacteria in the reduction of sediment-bound As(V), and have also shown that a stable enrichment culture of Fe(III)-reducing bacteria was able to mobilize arsenic (as As(III)) from sediments collected from West Bengal (Islamet al., 2004). To identify the Fe(III)-reducing bacteria that may play a role in the reduction of As(V) and mobilization of As(III), we made a detailed molecular analysis of this enrichment culture. It was dominated by a close relative ofGeothrix fermentans, but the type strain of this organism was unable to conserve energy for growth via the dissimilatory reduction of As(V), or reduce As(V) present in a defined medium containing fumarate as the electron acceptor. Furthermore, when the cells were grown using soluble Fe(III)-citrate as an electron acceptor in the presence of As(V), bacterial Fe(III) reduction resulted in the precipitation of the Fe(II)-bearing mineral vivianite in 2 weeks. This was accompanied by the efficient removal of As from solution. These results demonstrate thatGeothrix fermentans, in common with other key Fe(III)-reducing bacteria such asGeobacter sulfurreducens, does not reduce As(V) enzymatically, but can capture arsenic in Fe(II) minerals formed during respiration using Fe(III) as an electron acceptor. Thus, the reduction of arsenic-bearing Fe(III) oxide minerals is not sufficient to mobilize arsenic, but may result in the formation of Fe(II) biominerals that could potentially act as sinks for arsenic in sediments. Additional mechanisms, including dissimilatory As(V) reduction by other specialist anaerobic bacteria, are implicated in the mobilization of arsenic from sediments.


2005 ◽  
Vol 71 (4) ◽  
pp. 2186-2189 ◽  
Author(s):  
Daniel R. Bond ◽  
Derek R. Lovley

ABSTRACT In experiments performed using graphite electrodes poised by a potentiostat (+200 mV versus Ag/AgCl) or in a microbial fuel cell (with oxygen as the electron acceptor), the Fe(III)-reducing organism Geothrix fermentans conserved energy to support growth by coupling the complete oxidation of acetate to reduction of a graphite electrode. Other organic compounds, such as lactate, malate, propionate, and succinate as well as components of peptone and yeast extract, were utilized for electricity production. However, electrical characteristics and the results of shuttling assays indicated that unlike previously described electrode-reducing microorganisms, G. fermentans produced a compound that promoted electrode reduction. This is the first report of complete oxidation of organic compounds linked to electrode reduction by an isolate outside of the Proteobacteria.


2003 ◽  
Author(s):  
Charles Thomas Parker ◽  
Dorothea Taylor ◽  
George M Garrity
Keyword(s):  

2003 ◽  
Author(s):  
Charles Thomas Parker ◽  
Kara Mannor ◽  
George M Garrity
Keyword(s):  

2003 ◽  
Author(s):  
Charles Thomas Parker ◽  
Nicole Danielle Osier ◽  
George M Garrity
Keyword(s):  

2002 ◽  
Vol 68 (5) ◽  
pp. 2294-2299 ◽  
Author(s):  
Kelly P. Nevin ◽  
Derek R. Lovley

ABSTRACT Mechanisms for Fe(III) oxide reduction were investigated in Geothrix fermentans, a dissimilatory Fe(III)-reducing microorganism found within the Fe(III) reduction zone of subsurface environments. Culture filtrates of G. fermentans stimulated the reduction of poorly crystalline Fe(III) oxide by washed cell suspensions, suggesting that G. fermentans released one or more extracellular compounds that promoted Fe(III) oxide reduction. In order to determine if G. fermentans released electron-shuttling compounds, poorly crystalline Fe(III) oxide was incorporated into microporous alginate beads, which prevented contact between G. fermentans and the Fe(III) oxide. G. fermentans reduced the Fe(III) within the beads, suggesting that one of the compounds that G. fermentans releases is an electron-shuttling compound that can transfer electrons from the cell to Fe(III) oxide that is not in contact with the organism. Analysis of culture filtrates by thin-layer chromatography suggested that the electron shuttle has characteristics similar to those of a water-soluble quinone. Analysis of filtrates by ion chromatography demonstrated that there was as much as 250 μM dissolved Fe(III) in cultures of G. fermentans growing with Fe(III) oxide as the electron acceptor, suggesting that G. fermentans released one or more compounds capable of chelating and solubilizing Fe(III). Solubilizing Fe(III) is another strategy for alleviating the need for contact between cells and Fe(III) oxide for Fe(III) reduction. This is the first demonstration of a microorganism that, in defined medium without added electron shuttles or chelators, can reduce Fe(III) derived from Fe(III) oxide without directly contacting the Fe(III) oxide. These results are in marked contrast to those with Geobacter metallireducens, which does not produce electron shuttles or Fe(III) chelators. These results demonstrate that phylogenetically distinct Fe(III)-reducing microorganisms may use significantly different strategies for Fe(III) reduction. Thus, it is important to know which Fe(III)-reducing microorganisms predominate in a given environment in order to understand the mechanisms for Fe(III) reduction in the environment of interest.


Sign in / Sign up

Export Citation Format

Share Document