Structural, vibrational and electronic properties of α′-Ga2S3 under compression

Author(s):  
S. Gallego-Parra ◽  
R. Vilaplana ◽  
O. Gomis ◽  
E. Lora da Silva ◽  
A. Otero-de-la-Roza ◽  
...  

We report a joint experimental and theoretical study of the low-pressure phase of α′-Ga2S3 under compression. The structural, vibrational, topological and electronic properties have been evaluated to reveal the relevance of the vacancy channels and the single and double lone electron pairs in the pressure behaviour of this system.

Author(s):  
Kun Li ◽  
Junjie Wang ◽  
Vladislav A. Blatov ◽  
Yutong Gong ◽  
Naoto Umezawa ◽  
...  

AbstractAlthough tin monoxide (SnO) is an interesting compound due to its p-type conductivity, a widespread application of SnO has been limited by its narrow band gap of 0.7 eV. In this work, we theoretically investigate the structural and electronic properties of several SnO phases under high pressures through employing van der Waals (vdW) functionals. Our calculations reveal that a metastable SnO (β-SnO), which possesses space group P21/c and a wide band gap of 1.9 eV, is more stable than α-SnO at pressures higher than 80 GPa. Moreover, a stable (space group P2/c) and a metastable (space group Pnma) phases of SnO appear at pressures higher than 120 GPa. Energy and topological analyses show that P2/c-SnO has a high possibility to directly transform to β-SnO at around 120 GPa. Our work also reveals that β-SnO is a necessary intermediate state between high-pressure phase Pnma-SnO and low-pressure phase α-SnO for the phase transition path Pnma-SnO →β-SnO → α-SnO. Two phase transition analyses indicate that there is a high possibility to synthesize β-SnO under high-pressure conditions and have it remain stable under normal pressure. Finally, our study reveals that the conductive property of β-SnO can be engineered in a low-pressure range (0–9 GPa) through a semiconductor-to-metal transition, while maintaining transparency in the visible light range.


1978 ◽  
Vol 56 (10) ◽  
pp. 1386-1389
Author(s):  
Marie D'Iorio ◽  
Robin L. Armstrong

The pressure-induced polymorphic phase transition at about 4 k bar in rubidium iodide was studied using nuclear magnetic resonance. The signature of the structural transition is a loss of echo intensity which presumably is due to an increase in the number of lattice defects as a result of the transition. The ratio of the spin–spin relaxation times of the iodine nuclei in the two phases is in agreement with the ratio predicted by a second moment calculation. The actual experimental values, however, are considerably smaller than the theoretical predictions signifying the migration of lattice defects. Estimates of the iodine spin–lattice relaxation time at atmospheric pressure indicate the necessity to include both an anharmonic Raman contribution and a covalency factor. The change in spin–lattice relaxation time with pressure as measured in the low pressure phase is dominated by the change in the lattice parameter. At the critical pressure the spin–lattice relaxation time decreases by a fractional amount which is approximately equal to the fractional volume change characterizing the transition. The pressure derivative of the spin–lattice relaxation time in the high pressure phase is nearly equal to that in the low pressure phase.


2016 ◽  
Vol 49 (29) ◽  
pp. 295301 ◽  
Author(s):  
Haiping Wu ◽  
Yuzhen Liu ◽  
Erjun Kan ◽  
Yanming Ma ◽  
Wenjie Xu ◽  
...  

2008 ◽  
Vol 69 (11) ◽  
pp. 2907-2910 ◽  
Author(s):  
M. Rabah ◽  
D. Rached ◽  
M. Ameri ◽  
R. Khenata ◽  
A. Zenati ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document