scholarly journals Transition metal-tetracyanoquinodimethane monolayers as single-atom catalysts for the electrocatalytic nitrogen reduction reaction

2020 ◽  
Vol 1 (5) ◽  
pp. 1285-1292 ◽  
Author(s):  
Yiran Ying ◽  
Ke Fan ◽  
Xin Luo ◽  
Jinli Qiao ◽  
Haitao Huang

Single Sc/Ti atoms supported on TCNQ monolayers have been explored as outstanding electrocatalysts for nitrogen reduction.

2021 ◽  
Vol 23 (14) ◽  
pp. 8784-8791
Author(s):  
Qingling Meng ◽  
Ling Zhang ◽  
Jinge Wu ◽  
Shuwei Zhai ◽  
Xiamin Hao ◽  
...  

Theoretical screening of transition metal atoms anchored on monolayer C9N4 as highly stable, catalytically active and selective single-atom catalysts for nitrogen fixation.


2021 ◽  
Author(s):  
Shengbo Zhang ◽  
Miaomiao Han ◽  
Tongfei Shi ◽  
Haimin Zhang ◽  
Yue Lin ◽  
...  

Abstract The intriguing features of single-atom catalysts (SACs) could bring catalysis into a new paradigm, however, controllably synthesising SACs with desired SA loadings and coordination forms are challenging. Here, we report an adsorption-regulated approach to precisely control the synthesis of bimetallic Fe-Co SAs on carbon. Bacterial cellulose (BC) is utilised as an adsorption regulator to controllably impregnate Fe3+/Co2+ on BC and through carbonisation to anchor Fe-Co SAs on BC-derived carbon via bimetallic [(O-C2)3Fe-Co(O-C2)3] coordination with desired Fe/Co contents and atomic ratios. Under electrocatalytic nitrogen reduction reaction (NRR) conditions, [(O-C2)3Fe-Co(O-C2)3] is operando transformed to [(O-C2)3Fe-Co(O-C)C2] that promotes and sustains NRR performance. A superb ammonia yield of 574.8 ± 35.3 μg h-1 mgcat.-1 with an exceptional faradaic efficiency of 73.2 ± 4.6% are obtained from an electrocatalyst with the highest bimetallic Fe-Co site density. The exemplified synthetic approach would be of generically applicable to controllably anchor SAs on carbon that enables meaningfully investigate and rationally design SACs.


2020 ◽  
Vol 7 (19) ◽  
pp. 3609-3619
Author(s):  
Zengyao Wang ◽  
Jianfeng Shen ◽  
Wenzhi Fu ◽  
Jiangwen Liao ◽  
Juncai Dong ◽  
...  

Introducing and adjusting the oxygen vacancies (VO) of transition metal oxides has been proposed as a significant and effective way to tackle the sluggish nitrogen reduction reaction (NRR) in the electrocatalysis process.


2021 ◽  
Vol 77 ◽  
pp. 244-251
Author(s):  
Lakshitha Jasin Arachchige ◽  
Yongjun Xu ◽  
Zhongxu Dai ◽  
Xiao Li Zhang ◽  
Feng Wang ◽  
...  

Nanoscale ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 4903-4908 ◽  
Author(s):  
Kang Liu ◽  
Junwei Fu ◽  
Li Zhu ◽  
Xiaodong Zhang ◽  
Hongmei Li ◽  
...  

Electrochemical nitrogen reduction reaction (NRR) is a promising route to produce ammonia under mild conditions. Single-atom W supported on BP was screened as a promising electrocatalyst with high catalytic activity, stability, and selectively for NRR.


Sign in / Sign up

Export Citation Format

Share Document