scholarly journals Structure-property relationships in organic battery anode materials: exploring redox reactions in crystalline Na- and Li-benzene diacrylate using combined crystallography and density functional theory calculations

2021 ◽  
Author(s):  
Rodrigo Carvalho ◽  
Cleber Marchiori ◽  
Viorica-Alina Oltean ◽  
Stéven Renault ◽  
Tom Willhammar ◽  
...  

Organic-based materials are potential candidates for a new generation of sustainable and environmentally friendly battery technologies, but insights are currently missing into the structural, kinetic and thermodynamic properties of how...

2017 ◽  
Vol 19 (2) ◽  
pp. 1551-1559 ◽  
Author(s):  
Marco Taddei ◽  
Davide Tiana ◽  
Nicola Casati ◽  
Jeroen A. van Bokhoven ◽  
Berend Smit ◽  
...  

Structure–property relationships in mixed-linker UiO-66 were disclosed using high-resolution powder X-ray diffraction and density functional theory calculations.


2016 ◽  
Vol 18 (23) ◽  
pp. 15798-15806 ◽  
Author(s):  
Thomas M. Tolhurst ◽  
Brett Leedahl ◽  
Justin L. Andrews ◽  
Peter M. Marley ◽  
Sarbajit Banerjee ◽  
...  

An elucidation of structure–property relationships in V2O5 polymorphs using synchrotron X-ray spectroscopy and density functional theory calculations.


2013 ◽  
Vol 12 (01) ◽  
pp. 1250094 ◽  
Author(s):  
HONGBO DU ◽  
YU JIA ◽  
RUI-QIN ZHANG

The energetically favorable structures and characteristic infrared (IR) and Raman peaks of Ti n O m(n = 2–4, m ≤ 2n) clusters are obtained in this work using a B3LYP/6-311G(d) method of density functional theory (DFT). The structures with m < 2n compose of Ti atoms of lower numbers of coordination with O atoms, providing many dangling bonds which considerably enhance the reactivity compared with its bulk counterpart. Two- and three-coordinated O atoms present for m/n ≤ 1.5, whereas two- and also single-coordinated O atoms are found for m/n > 1.5. The Ti n O m(n = 2–4, m < 2n) clusters show strong IR peaks in the range of 600–1100 cm-1 and strong Raman peaks in the region of 300–800 cm-1, whereas both the IR and Raman spectrum peaks of the Ti n O m(n = 2–4, m = 2n) clusters are in the region of 700–1100 cm-1. The main Raman peak of the Ti n O m(m ≠ 2n) clusters is at a frequency considerably lower than that of the IR spectrum. Our results can help understand the structure-property relationships of the Ti n O m clusters and provide their characteristic spectroscope features for further experimental identification.


RSC Advances ◽  
2016 ◽  
Vol 6 (43) ◽  
pp. 37203-37211 ◽  
Author(s):  
Talapunur Vikramaditya ◽  
Mukka Saisudhakar ◽  
Kanakamma Sumithra

Using density functional theory we have investigated the structure–property relationships of organic molecules with a donor–linker–acceptor (DLA) framework, which can be used as precursors of OLED materials.


Sign in / Sign up

Export Citation Format

Share Document