Gold nanonails for surface-enhanced infrared absorption

2020 ◽  
Vol 5 (8) ◽  
pp. 1200-1212
Author(s):  
Hang Yin ◽  
Nannan Li ◽  
Yubing Si ◽  
Han Zhang ◽  
Baocheng Yang ◽  
...  

Colloidal gold nanonails, exhibiting large electric field enhancement in the mid-infrared region, are synthesized for surface-enhanced infrared absorption (SEIRA).

Nanoscale ◽  
2014 ◽  
Vol 6 (21) ◽  
pp. 12921-12928 ◽  
Author(s):  
Anran Li ◽  
Shuzhou Li

Hot spots with both large electric field enhancement and large volumes can be obtained in spiky nanoparticle dimers.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bao-xin Yan ◽  
Yan-ying Zhu ◽  
Yong Wei ◽  
Huan Pei

AbstractIn this paper, the surface enhanced Raman scattering (SERS) characteristics of Au and Au@Al2O3 nanoparticle dimers were calculated and analyzed by using finite element method (3D-FEM). Firstly, the electric field enhancement factors of Au nanoparticles at the dimer gap were optimized from three aspects: the incident angle of the incident light, the radius of nanoparticle and the distance of the dimer. Then, aluminum oxide is wrapped on the Au dimer. What is different from the previous simulation is that Al2O3 shell and Au core are regarded as a whole and the total radius of Au@Al2O3 dimer is controlled to remain unchanged. By comparing the distance of Au nucleus between Au and Au@Al2O3 dimer, it is found that the electric field enhancement factor of Au@Al2O3 dimer is much greater than that of Au dimer with the increase of Al2O3 thickness. The peak of electric field of Au@Al2O3 dimer moves towards the middle of the resonance peak of the two materials, and it is more concentrated than that of the Au dimer. The maximum electric field enhancement factor 583 is reached at the shell thickness of 1 nm. Our results provide a theoretical reference for the design of SERS substrate and the extension of the research scope.


2020 ◽  
Author(s):  
Baoxin Yan ◽  
Yanying Zhu ◽  
Yong Wei ◽  
Huan Pei

Abstract In this paper, the surface enhanced Raman scattering (SERS) characteristics of Au and Au@Al2O3 nanoparticle dimers were calculated and analyzed by using finite element method (3D-FEM). Firstly, the electric field enhancement factors of Au nanoparticles at the dimer gap were optimized from three aspects: the incident angle of the incident light, the radius of nanoparticle and the distance of the dimer. Then, aluminum oxide is wrapped on the Au dimer. What is different from the previous simulation is that Al2O3 shell and Au core are regarded as a whole and the total radius of Au@Al2O3 dimer is controlled to remain unchanged. By comparing the distance of Au nucleus between Au and Au@Al2O3 dimer, it is found that the electric field enhancement factor of Au@Al2O3 dimer is much greater than that of Au dimer with the increase of Al2O3 thickness. The peak electric field of Au@Al2O3 dimer moves towards the middle of the resonance peak of the two materials, but the peak electric field of Au dimer is more concentrated than that of Au dimer, so that the excitation wavelength has less influence on Raman enhancement. The maximum electric field enhancement factor 583 is reached at the shell thickness of 1 nm. Our results provide a theoretical reference for the design of SERS substrate and the extension of the research scope.


2015 ◽  
Vol 29 (31) ◽  
pp. 1550197 ◽  
Author(s):  
Ying Liu ◽  
Guangjun Ren ◽  
Rongjian Du ◽  
Yongming Zhang ◽  
Tianbo Tan ◽  
...  

We present a theoretical mechanism for electric field enhancement with SERS of InAs particles of subwavelength apertures under THz excitation. The distribution of electric field confirms that there is a strong enhancement in the InAs particles at THz frequencies. The InAs with a Drude-like behavior in THz range, which is similar to metals at optical frequencies, leads to different SERS when the parameters of these two particles change. The SERS enhancement factor can reach [Formula: see text] under the certain conditions.


Sign in / Sign up

Export Citation Format

Share Document