Evolution of short-range order in chemically and physically grown thin film bilayer structures for electronic applications

Nanoscale ◽  
2020 ◽  
Vol 12 (24) ◽  
pp. 13103-13112
Author(s):  
Ann-Christin Dippel ◽  
Olof Gutowski ◽  
Lars Klemeyer ◽  
Ulrich Boettger ◽  
Fenja Berg ◽  
...  

The local atomic structure of two stacked thin films is probed by applying grazing incidence x-ray total scattering at variable incidence angle and resolving pair distribution functions for each individual layer.

2017 ◽  
Vol 125 ◽  
pp. 15-26 ◽  
Author(s):  
L.R. Owen ◽  
H.Y. Playford ◽  
H.J. Stone ◽  
M.G. Tucker

2016 ◽  
Vol 119 (15) ◽  
pp. 154103
Author(s):  
Kohki Nagata ◽  
Atsushi Ogura ◽  
Ichiro Hirosawa ◽  
Tomoyuki Suwa ◽  
Akinobu Teramoto ◽  
...  

Author(s):  
Jonathan Ogle ◽  
Daniel Powell ◽  
Eric Amerling ◽  
Detlef Matthias Smilgies ◽  
Luisa Whittaker-Brooks

<p>Thin film materials have become increasingly complex in morphological and structural design. When characterizing the structure of these films, a crucial field of study is the role that crystallite orientation plays in giving rise to unique electronic properties. It is therefore important to have a comparative tool for understanding differences in crystallite orientation within a thin film, and also the ability to compare the structural orientation between different thin films. Herein, we designed a new method dubbed the mosaicity factor (MF) to quantify crystallite orientation in thin films using grazing incidence wide-angle X-ray scattering (GIWAXS) patterns. This method for quantifying the orientation of thin films overcomes many limitations inherent in previous approaches such as noise sensitivity, the ability to compare orientation distributions along different axes, and the ability to quantify multiple crystallite orientations observed within the same Miller index. Following the presentation of MF, we proceed to discussing case studies to show the efficacy and range of application available for the use of MF. These studies show how using the MF approach yields quantitative orientation information for various materials assembled on a substrate.<b></b></p>


2019 ◽  
Vol 52 (2) ◽  
pp. 247-251
Author(s):  
Detlef-M. Smilgies

Recently, surface and thin-film studies using area detectors have become prevalent. An important class of such systems are lamellar thin films formed by small molecules, liquid crystals or semicrystalline polymers. Frequently, the lamellae align more or less parallel to the substrate. Such structures can be easily discerned by their characteristic X-ray scattering close to the incident plane. This paper describes how such patterns can be simulated, in order to extract morphological information about the thin film.


1995 ◽  
Vol 39 ◽  
pp. 659-664 ◽  
Author(s):  
Kenji Ishida ◽  
Akinori Kita ◽  
Kouichi Hayashi ◽  
Toshihisa Horiuchi ◽  
Shoichi Kal ◽  
...  

Thin film technology is rapidly evolving today, and the characterization of the thin film and its surface have become very important issue not only from scientific but also technological viewpoints. Although x-ray diffraction measurements have been used as suitable evaluation methods in crystallography studies, its application to the structural evaluation of the thin films, especially organic one having the low electron densities, is not easy due to the small amounts of scattering volume and the high obstructive scattering noise from the substrate. However, the x-ray diffraction measurements under grazing incidence will aid not only in overcoming the such problems but also in analyzing in-plane structure of the thin films. Therefore, so-called grazing incidence x-ray diffraction (GIXD) has been recognized as one of the most powerful tools for the surface and thin film studies.


1994 ◽  
Vol 356 ◽  
Author(s):  
S. G. Malhotra ◽  
Z. U. Rek ◽  
L. J. Parfitt ◽  
S. M. Yalisove ◽  
J. C. Bilello

AbstractTraditionally, the magnitude of the stress in a thin film is obtained by measuring the curvature of the film-substrate couple; however, these techniques all measure the average stress throughout the film thickness. On a microscopic level, the details of the strain distribution as a function of depth through the thickness of the film can have important consequences in governing film quality and ultimate morphology. A new method for determining the magnitude of principal strains (strain eigenvalues) as a function of x-ray penetration depth using grazing incidence x-ray scattering for a polycrystalline thin film will be described. Results are reported for two Mo metallizations ˜ 500 Å and ˜1000 Å thick sputtered onto Si {100} substrates. The magnitude of the principal strains at several penetration depths was accomplished by an analysis of the diffraction peak shifts of at least six independent {hkl} scattering vectors from the Mo thin films. An out-of-plane strain gradient was identified in both Mo films and the strain eigenvalues were found to be anisotropic in nature. This new methodology should work with a variety of thin films and hence would provide quantitative insight into the evolution of thin film microstructure.


1987 ◽  
Vol 2 (4) ◽  
pp. 471-477 ◽  
Author(s):  
G. Lim ◽  
W. Parrish ◽  
C. Ortiz ◽  
M. Bellotto ◽  
M. Hart

A method using synchrotron radiation parallel beam x-ray optics with a small incidence angle α on the specimen and 2Θ-detector scanning is described for depth profiling analysis of thin films. The instrumentation is the same as used for Θ:2Θ synchrotron parallel beam powder diffractometry, except that the specimen is uncoupled from the detector. There is no profile distortion. Below the critical angle for total reflection αc, the top tens of Angstroms are sampled. Depth profiling is controlled to a few Angstroms using a small α and 0.005° steps. The penetration depth increases to several hundred Angstroms as α approaches αc. Above αc there is a rapid increase in penetration depth to a thousand Angstroms or more and the profiling cannot be sensitively controlled. At grazing incidence the peaks are shifted several tenths of a degree by the x-ray refraction and an experimental procedure for calculating the shifts is described. The method is illustrated with an analysis of iron oxide films.


Author(s):  
J.C. Barry ◽  
R.S. Timsit ◽  
D. Landheer

Tantalum-aluminium thin films have assumed considerable technological importance since the discovery in the late 1960's that the films are useful in the fabrication of thin film resistors and capacitors. It is generally claimed that these films, when prepared by co-sputtering Ta and Al, are amorphous over a range of Ta concentrations extending approximately from 15 to 75 at%, and are crystalline beyond this range. Diffuse electron diffraction patterns and ‘mottle pattern’ transmission electron micrographs are typical characteristics of the amorphous phase. In this present study we have attempted to identify any atomic short range order in the amorphous Ta-Al films and to follow the changes in this order as the Ta concentration increases across the amorphous/crystalline transition. The co-sputtered Ta-Al films of ≈100A thickness were examined in a high resolution 4000EX electron microscope (top entry, ±15°(x,y) tilt, Cs = 1.0mm ) at 400kV.


Sign in / Sign up

Export Citation Format

Share Document