In situ unraveling of the effect of the dynamic chemical state on selective CO2 reduction upon zinc electrocatalysts

Nanoscale ◽  
2020 ◽  
Vol 12 (35) ◽  
pp. 18013-18021
Author(s):  
Tai-Lung Chen ◽  
Hsiao-Chien Chen ◽  
Yen-Po Huang ◽  
Sheng-Chih Lin ◽  
Cheng-Hung Hou ◽  
...  

Unraveling the reaction mechanism behind CO2RR via a series of in situ measurements is a crucial step for advancing the development of efficient and selective catalyst and relations between product selectivity.

2020 ◽  
Vol 74 (6) ◽  
pp. 478-482
Author(s):  
Maxime Tarrago ◽  
Shengfa Ye

This short review summarizes examples of many homogeneous non-noble catalysts for CO2-to-CO reduction and compares their feasible mechanisms. The focus is to show that elucidating the electronic structure of the catalytic system likely provides better understanding of the reaction mechanism and product selectivity.


2021 ◽  
Vol 11 (6) ◽  
pp. 2021-2025
Author(s):  
Liujin Wei ◽  
Guan Huang ◽  
Yajun Zhang

The combination of time-resolved transient photoluminescence with in-situ Fourier transform infrared spectroscopy has been conducted to investigate the intrinsic phase structure-dependent activity of Bi2O3 catalyst for CO2 reduction.


2017 ◽  
Vol 5 (43) ◽  
pp. 22743-22749 ◽  
Author(s):  
Charles I. Shaughnessy ◽  
Dylan T. Jantz ◽  
Kevin C. Leonard

The electrochemically-formed In0–In2O3 composite changes the selectivity of CO2 reduction on In from formate to CO at relatively low overpotentials.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Shen Wang ◽  
Hongbo Xu ◽  
Tingting Hao ◽  
Peiyuan Wang ◽  
Xiang Zhang ◽  
...  

AbstractElectrochromic supercapacitors (ESCs) are appealing for smart electronic device applications due to their advantages of dual-function integration. Unfortunately, the synchronous dual-function evaluation and the essential reaction mechanism are ambiguous. Herein, we constructed a 3D WO3-x nanowire networks/fluorine-doped tin oxide (WO3-x NWNs/FTO) bifunctional electrode for ESCs by a solvothermal self-crystal seeding method. The synchronous correspondence relationship between the optical and electrochemical performances of the WO3-x NWNs/FTO electrode was explored using an operando spectra-electrochemical characterization method. It reveals an excellent areal capacity of 57.57 mF cm−2 with a high corresponding optical modulation (ΔT) of 85.05% and high optical-electrochemical cycling stability. Furthermore, the synergistic reaction mechanism between the Al3+ ion intercalation behavior and the surface pseudocapacitance reaction during electrochemical cycling is revealed utilizing in situ X-ray diffraction. Based on these results, an ESC device was constructed by pairing WO3-x/FTO as the cathode with V2O5 nanoflowers/FTO (V2O5 NFs/FTO) as the anode, which simultaneously deliver high capacity and large optical modulation. Moreover, the energy storage level of the ESC device could be visually monitored by rapid and reversible color transitions in real time. This work provides a promising pathway to developing multi-functional integrated smart supercapacitors.


Author(s):  
Xiaochao Zhang ◽  
Tingting Xue ◽  
Changming Zhang ◽  
Jiancheng Wang ◽  
Jinbo Xue ◽  
...  

2011 ◽  
Vol 257 (7) ◽  
pp. 2707-2711 ◽  
Author(s):  
S. Bruijn ◽  
R.W.E. van de Kruijs ◽  
A.E. Yakshin ◽  
F. Bijkerk

2016 ◽  
Vol 12 ◽  
pp. 1421-1427 ◽  
Author(s):  
Grzegorz Mlostoń ◽  
Róża Hamera-Fałdyga ◽  
Anthony Linden ◽  
Heinz Heimgartner
Keyword(s):  

Ferrocenyl hetaryl thioketones react smoothly with in situ generated thiocarbonyl S-methanides to give 1,3-dithiolanes. In the case of aromatic S-methanides, the sterically more crowded 4,4,5,5-tetrasubstituted 1,3-dithiolanes (2-CH2 isomers) were formed as sole products. The reactions with cycloaliphatic S-methanides led to mixtures of 2-CH2 and 5-CH2 isomers with the major component being the sterically more crowded 2-CH2 isomers. The preferred formation of the latter products is explained by the assumption that the formal [3 + 2]-cycloadducts were formed via a stepwise reaction mechanism with a stabilized 1,5-diradical as a key intermediate. The complete change of the reaction mechanism toward the concerted [3 + 2]-cycloaddition was observed in the reaction of a sterically crowded cycloaliphatic thiocarbonyl ylide with ferrocenyl methyl thioketone.


Sign in / Sign up

Export Citation Format

Share Document