Intercalation and delamination of Ti2SnC with high lithium ion storage capacity

Nanoscale ◽  
2021 ◽  
Author(s):  
Haijiang Wu ◽  
Jiale Zhu ◽  
Liang Liu ◽  
Kequan Cao ◽  
Dan Yang ◽  
...  

Li-ion battery attracts great attentions due to the rapid increasing and urgent demand for high energy storage devices. MAX phase compounds, layered ternary transition metal carbides and/or nitrides, show promise...

2016 ◽  
Vol 4 (15) ◽  
pp. 5366-5384 ◽  
Author(s):  
Jung Kyoo Lee ◽  
Changil Oh ◽  
Nahyeon Kim ◽  
Jang-Yeon Hwang ◽  
Yang-Kook Sun

Silicon-based composites are very promising anode materials not only for boosting the energy density of lithium-ion batteries (LIBs) but for realizing Li metal-free new battery systems such as Li–S and Li–O2.


Author(s):  
gaolong zhu ◽  
yuyu he ◽  
yunlong deng ◽  
ming wang ◽  
xiaoyan liu ◽  
...  

Abstract High energy density lithium-ion batteries are urgently needed due to the rapid growth demands of electric vehicles, electronic devices, and grid energy storage devices. There is still significant opportunity to improve the energy density of existing state-of-the-art lithium-ion batteries by optimizing the separator thickness, which is usually ignored. Here, the dependence of battery gravimetric and volumetric energy densities on separator thickness has been quantitatively discussed in different type Li-ion batteries by calculations combined with experiments. With a decrease in separator thickness, the volumetric energy density is greatly improved. Meanwhile, the gravimetric energy densities are significantly improved as the electrolyte soaking in the separator is reduced. The gravimetric and volumetric energy densities of graphite (Gr) | NCM523 cells enable to increase 11.5% and 29.7%, respectively, by reducing the thickness of separator from 25 μm to 7 μm. Furthermore, the Li | S battery exhibits an extremely high energy density of 664.2 Wh Kg-1 when the thickness of the separator is reduced to 1 μm. This work sheds fresh light on the rational design of high energy density lithium-ion batteries.


2020 ◽  
Vol 8 (9) ◽  
pp. 4950-4959 ◽  
Author(s):  
M. L. Divya ◽  
Subramanian Natarajan ◽  
Yun-Sung Lee ◽  
Vanchiappan Aravindan

Graphite is the dominant choice as negative electrode since the commercialization of lithium-ion batteries, which could bring about a significant increase in demand for the material owing to its usage in forthcoming graphite-based energy storage devices.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 487
Author(s):  
Tae-Kue Kim ◽  
Sung-Chun Moon

The growth of the lithium-ion battery market is accelerating. Although they are widely used in various fields, ranging from mobile devices to large-capacity energy storage devices, stability has always been a problem, which is a critical disadvantage of lithium-ion batteries. If the battery is unstable, which usually occurs at the end of its life, problems such as overheating and overcurrent during charge-discharge increase. In this paper, we propose a method to accurately predict battery life in order to secure battery stability. Unlike the existing methods, we propose a method of assessing the life of a battery by estimating the irreversible energy from the basic law of entropy using voltage, current, and time in a realistic dimension. The life estimation accuracy using the proposed method was at least 91.6%, and the accuracy was higher than 94% when considering the actual used range. The experimental results proved that the proposed method is a practical and effective method for estimating the life of lithium-ion batteries.


2017 ◽  
Vol 5 (39) ◽  
pp. 20969-20977 ◽  
Author(s):  
Eunho Lim ◽  
Won-Gwang Lim ◽  
Changshin Jo ◽  
Jinyoung Chun ◽  
Mok-Hwa Kim ◽  
...  

A Li-ion hybrid supercapacitor (Li-HSC) delivering high energy within seconds (excellent rate performance) with stable cycle life is one of the most highly attractive energy storage devices.


Nanoscale ◽  
2021 ◽  
Author(s):  
Zhichang Xiao ◽  
Junwei Han ◽  
Haiyong He ◽  
Xinghao Zhang ◽  
Jing Xiao ◽  
...  

Lithium-ion capacitors (LICs) have attracted much attention considering their efficient combination of high energy density and high-power density. However, to meet the increasing requirements of energy storage devices and the...


Author(s):  
Kai Zhang ◽  
Yuan Xie ◽  
Zhongfan Jia ◽  
Benjamin B. Noble ◽  
Kenichi Oyaizu ◽  
...  

Organic redox molecules exhibiting multi-electron storage and fast electron transfer kinetics are ideal compounds for sustainable high-energy storage devices with high-power output. Nitroxide radical polymers (NRPs) are the representative materials...


Author(s):  
Tariq Bashir ◽  
Sara Adeeba Ismail ◽  
Yuheng Song ◽  
Rana Muhammad Irfan ◽  
Shiqi Yang ◽  
...  

Energy storage devices such as batteries hold great importance for society, owing to their high energy density, environmental benignity and low cost. However, critical issues related to their performance and safety still need to be resolved. The periodic table of elements is pivotal to chemistry, physics, biology and engineering and represents a remarkable scientific breakthrough that sheds light on the fundamental laws of nature. Here, we provide an overview of the role of the most prominent elements, including s-block, p-block, transition and inner-transition metals, as electrode materials for lithium-ion battery systems regarding their perspective applications and fundamental properties. We also outline hybrid materials, such as MXenes, transition metal oxides, alloys and graphene oxide. Finally, the challenges and prospects of each element and their derivatives and hybrids for future battery systems are discussed, which may provide guidance towards green, low-cost, versatile and sustainable energy storage devices.


Author(s):  
Egor S. KHAVANOV ◽  
Roman A. BESCHASTNY ◽  
Dmitry A. FATEEV

The paper presents a configuration for the Power Supply System (PSS) of a Re-entry Vehicle (RV) of a Crew Transportation Spacecraft (CTS) based on expendable batteries and autonomous current sources specially designed to support electrical pulsed loads of CTS RV during descent. The paper reviews some special features of such a configuration. It present a CTS RV PSS option which has hybrid energy storage devices based on Li-ion storage battery and Super-Capacitor Units (SCU) packaged in a single housing. It present a CTS RV PSS option which has Li-ion storage batteries to support steady-state onboard loads and patch cables based on super-capacitors to support pulse loads (initiation of pyros of the CTS RV soft landing thrusters). Schematics have been developed for the patch cable with a super-capacitor unit (SCU–patch cable), which were used to refine its electrical parameters to take into account the highest pulsed load requirements for an RV by constructing a math model of the SCU–patch cable in MATLAB/Simulink and running a series of simulations. The paper presents simulation results drawing conclusions about the practicability of using such a device. Key words: reentry vehicle, patch cable, super-capacitor unit, lithium-ion battery, crew transportation spacecraft, math model.


Sign in / Sign up

Export Citation Format

Share Document