Achieving high-energy dual carbon Li-ion capacitors with unique low- and high-temperature performance from spent Li-ion batteries

2020 ◽  
Vol 8 (9) ◽  
pp. 4950-4959 ◽  
Author(s):  
M. L. Divya ◽  
Subramanian Natarajan ◽  
Yun-Sung Lee ◽  
Vanchiappan Aravindan

Graphite is the dominant choice as negative electrode since the commercialization of lithium-ion batteries, which could bring about a significant increase in demand for the material owing to its usage in forthcoming graphite-based energy storage devices.

2019 ◽  
Vol 7 (16) ◽  
pp. 9748-9760 ◽  
Author(s):  
Linchun He ◽  
Chao Chen ◽  
Masashi Kotobuki ◽  
Feng Zheng ◽  
Henghui Zhou ◽  
...  

All-solid-state Li-ion batteries (ASSLiB) have been considered to be the next generation energy storage devices that can overcome safety issues and increase the energy density by replacing the organic electrolyte with inflammable solid electrolyte.


RSC Advances ◽  
2018 ◽  
Vol 8 (3) ◽  
pp. 1576-1582 ◽  
Author(s):  
Mikhail Miroshnikov ◽  
Keiko Kato ◽  
Ganguli Babu ◽  
Kizhmuri P. Divya ◽  
Leela Mohana Reddy Arava ◽  
...  

The burgeoning energy demands of an increasingly eco-conscious population have spurred the need for sustainable energy storage devices, and have called into question the viability of the popular lithium ion battery.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1074 ◽  
Author(s):  
Yu Miao ◽  
Patrick Hynan ◽  
Annette von Jouanne ◽  
Alexandre Yokochi

Over the past several decades, the number of electric vehicles (EVs) has continued to increase. Projections estimate that worldwide, more than 125 million EVs will be on the road by 2030. At the heart of these advanced vehicles is the lithium-ion (Li-ion) battery which provides the required energy storage. This paper presents and compares key components of Li-ion batteries and describes associated battery management systems, as well as approaches to improve the overall battery efficiency, capacity, and lifespan. Material and thermal characteristics are identified as critical to battery performance. The positive and negative electrode materials, electrolytes and the physical implementation of Li-ion batteries are discussed. In addition, current research on novel high energy density batteries is presented, as well as opportunities to repurpose and recycle the batteries.


Author(s):  
Yamato Haniu ◽  
Hiroki Nara ◽  
Seongki Ahn ◽  
Toshiyuki Momma ◽  
Wataru Sugimoto ◽  
...  

Lithium-ion capacitors (LICs) are energy storage devices that bridge the gap between electric double-layer capacitors and lithium-ion batteries (LIBs). A typical LIC cell is composed of a capacitor-type positive electrode...


Author(s):  
Tariq Bashir ◽  
Sara Adeeba Ismail ◽  
Yuheng Song ◽  
Rana Muhammad Irfan ◽  
Shiqi Yang ◽  
...  

Energy storage devices such as batteries hold great importance for society, owing to their high energy density, environmental benignity and low cost. However, critical issues related to their performance and safety still need to be resolved. The periodic table of elements is pivotal to chemistry, physics, biology and engineering and represents a remarkable scientific breakthrough that sheds light on the fundamental laws of nature. Here, we provide an overview of the role of the most prominent elements, including s-block, p-block, transition and inner-transition metals, as electrode materials for lithium-ion battery systems regarding their perspective applications and fundamental properties. We also outline hybrid materials, such as MXenes, transition metal oxides, alloys and graphene oxide. Finally, the challenges and prospects of each element and their derivatives and hybrids for future battery systems are discussed, which may provide guidance towards green, low-cost, versatile and sustainable energy storage devices.


2012 ◽  
Vol 441 ◽  
pp. 231-234 ◽  
Author(s):  
Xiang Wu Zhang ◽  
Li Wen Ji ◽  
Zhan Lin ◽  
Ying Li

Research and development in textiles have gone beyond the conventional applications as clothing and furnishing materials; for example, the convergence of textiles, nanotechnologies, and energy science opens up the opportunity to take on one of the major challenges in the 21st century energy. This presentation addresses the development of high-energy lithium-ion batteries using electrospun nanofibers.


Nanoscale ◽  
2021 ◽  
Author(s):  
Haijiang Wu ◽  
Jiale Zhu ◽  
Liang Liu ◽  
Kequan Cao ◽  
Dan Yang ◽  
...  

Li-ion battery attracts great attentions due to the rapid increasing and urgent demand for high energy storage devices. MAX phase compounds, layered ternary transition metal carbides and/or nitrides, show promise...


RSC Advances ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 5958-5992
Author(s):  
Jahidul Islam ◽  
Faisal I. Chowdhury ◽  
Join Uddin ◽  
Rifat Amin ◽  
Jamal Uddin

With the rapid propagation of flexible electronic devices, flexible lithium-ion batteries are emerging as the most promising energy supplier among all of the energy storage devices due to high energy and power densities with good cycling stability.


2021 ◽  
Vol 1044 ◽  
pp. 3-14
Author(s):  
Ahmad Jihad ◽  
Affiano Akbar Nur Pratama ◽  
Salsabila Ainun Nisa ◽  
Shofirul Sholikhatun Nisa ◽  
Cornelius Satria Yudha ◽  
...  

Li-ion batteries are one of the most popular energy storage devices widely applied to various kinds of equipment, such as mobile phones, medical and military equipment, etc. Therefore, due to its numerous advantages, especially on the NMC type, there is a predictable yearly increase in Li-ion batteries' demand. However, even though it is rechargeable, Li-ion batteries also have a usage time limit, thereby increasing the amount of waste disposed of in the environment. Therefore, this study aims to determine the optimum conditions and the potential and challenges from the waste Li-ion battery recycling process, which consists of pretreatment, metal extraction, and product preparation. Data were obtained by studying the literature related to Li-ion battery waste's recycling process, which was then compiled into a review. The results showed that the most optimum recycling process of Li-ion batteries consists of metal extraction by a leaching process that utilizes H2SO4 and H2O2 as leaching and reducing agents, respectively. Furthermore, it was proceeding with the manufacturing of a new Li-ion battery.


2021 ◽  
Author(s):  
Yohandys A. Zulueta ◽  
Minh Tho Nguyen

The improvement of Li-ion transport properties and doping engineering in Li-ion batteries are currently active research topics in the search for next-generation energy storage devices.


Sign in / Sign up

Export Citation Format

Share Document