scholarly journals How did correlative atomic force microscopy and super-resolution microscopy evolve in the quest for unravelling enigmas in biology?

Nanoscale ◽  
2021 ◽  
Author(s):  
Adelaide Miranda ◽  
Ana I. Gómez-Varela ◽  
Andreas Stylianou ◽  
Liisa M. Hirvonen ◽  
Humberto Sánchez ◽  
...  

This review provides a detailed picture of the innovative efforts to combine atomic force microscopy and different super-resolution microscopy techniques to elucidate biological questions.

2018 ◽  
Author(s):  
Selma Dahmane ◽  
Christine Doucet ◽  
Antoine Le Gall ◽  
Célia Chamontin ◽  
Patrice Dosset ◽  
...  

SUMMARYHIV-1 assembly specifically alters both partitioning and dynamics of the tetraspanins CD9 and CD81 forming enriched areas where the virus buds. Importantly the presence of these proteins at exit sites and in viral particles inhibits virus-induced membrane fusion. To get molecular insights into tetraspanins partitioning in this viral context, we correlated nanoscale CD9 mapping obtained by super resolution microscopy to membrane topography probed by Atomic Force Microscopy (AFM). We demonstrated that CD9 is specifically trapped within the nascent viral particles, especially at buds tips, and that Gag mediate CD9 and CD81 depletion from cellular surfaces, even in the absence of Vpu and Nef, resulting from tetraspanins escaping from the plasma membrane during HIV-1 release. In addition, we showed that CD9 is organized as small membrane assemblies of few tens of nanometers that can coalesce upon Gag expression. Our results support a functional redundancy among tetraspanins during HIV release.


2019 ◽  
Vol 10 ◽  
pp. 617-633 ◽  
Author(s):  
Aaron Mascaro ◽  
Yoichi Miyahara ◽  
Tyler Enright ◽  
Omur E Dagdeviren ◽  
Peter Grütter

Recently, there have been a number of variations of electrostatic force microscopy (EFM) that allow for the measurement of time-varying forces arising from phenomena such as ion transport in battery materials or charge separation in photovoltaic systems. These forces reveal information about dynamic processes happening over nanometer length scales due to the nanometer-sized probe tips used in atomic force microscopy. Here, we review in detail several time-resolved EFM techniques based on non-contact atomic force microscopy, elaborating on their specific limitations and challenges. We also introduce a new experimental technique that can resolve time-varying signals well below the oscillation period of the cantilever and compare and contrast it with those previously established.


Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1142 ◽  
Author(s):  
Phuong Nguyen-Tri ◽  
Payman Ghassemi ◽  
Pascal Carriere ◽  
Sonil Nanda ◽  
Aymen Amine Assadi ◽  
...  

Atomic force microscopy (AFM) has been extensively used for the nanoscale characterization of polymeric materials. The coupling of AFM with infrared spectroscope (AFM-IR) provides another advantage to the chemical analyses and thus helps to shed light upon the study of polymers. This paper reviews some recent progress in the application of AFM and AFM-IR in polymer science. We describe the principle of AFM-IR and the recent improvements to enhance its resolution. We also discuss the latest progress in the use of AFM-IR as a super-resolution correlated scanned-probe infrared spectroscopy for the chemical characterization of polymer materials dealing with polymer composites, polymer blends, multilayers, and biopolymers. To highlight the advantages of AFM-IR, we report several results in studying the crystallization of both miscible and immiscible blends as well as polymer aging. Finally, we demonstrate how this novel technique can be used to determine phase separation, spherulitic structure, and crystallization mechanisms at nanoscales, which has never been achieved before. The review also discusses future trends in the use of AFM-IR in polymer materials, especially in polymer thin film investigation.


2020 ◽  
Vol 213 ◽  
pp. 112991
Author(s):  
Yinan Wu ◽  
Yongchun Fang ◽  
Chao Wang ◽  
Cunhuan Liu ◽  
Zhi Fan

Sign in / Sign up

Export Citation Format

Share Document