scholarly journals Density functional study on the CO oxidation reaction mechanism on MnN2-doped graphene

RSC Advances ◽  
2020 ◽  
Vol 10 (46) ◽  
pp. 27856-27863
Author(s):  
Mingming Luo ◽  
Zhao Liang ◽  
Chao Liu ◽  
Xiaopeng Qi ◽  
Mingwei Chen ◽  
...  

The various COOR mechanisms on MnN2-doped graphene (MnN2C2: MnN2C2-hex, MnN2C2-opp, MnN2C2-pen) were investigated for the first time.

RSC Advances ◽  
2021 ◽  
Vol 11 (30) ◽  
pp. 18371-18380
Author(s):  
Erik Bhekti Yutomo ◽  
Fatimah Arofiati Noor ◽  
Toto Winata

The number of dopant atoms is a parameter that can effectively tune the electronic and magnetic properties of graphitic and pyridinic N-doped graphene.


Nanoscale ◽  
2017 ◽  
Vol 9 (43) ◽  
pp. 16817-16825 ◽  
Author(s):  
Hao Wang ◽  
Jianhua Shen ◽  
Jianfei Huang ◽  
Tengjing Xu ◽  
Jingrun Zhu ◽  
...  

The Au atoms on CeO2 foam are a more stable site for CO adsorption on the catalysts.


2014 ◽  
Vol 16 (46) ◽  
pp. 25498-25507 ◽  
Author(s):  
Junjie Gu ◽  
Qian Du ◽  
You Han ◽  
Zhenghua He ◽  
Wei Li ◽  
...  

The stabilities of gold species on N-doped graphene increase with its valence state. Au2Cl6 interacts preferentially with HCl on N-doped supports, enhancing the stability of Au catalysts for acetylene hydrochlorination.


2015 ◽  
Vol 17 (42) ◽  
pp. 28010-28021 ◽  
Author(s):  
Dennis Palagin ◽  
Jonathan P. K. Doye

Density functional theory based global geometry optimization has been used to demonstrate the crucial influence of the geometry of the catalytic cluster on the energy barriers for the CO oxidation reaction over Pd-based bimetallic nanoalloys.


Sign in / Sign up

Export Citation Format

Share Document