Boosting cell performance with self-supported PtCu nanotube arrays serving as the cathode in a proton exchange membrane fuel cell

2020 ◽  
Vol 4 (7) ◽  
pp. 3640-3646
Author(s):  
Dewei Yao ◽  
Hongmei Yu ◽  
Wei Song ◽  
Xueqiang Gao ◽  
Zhixuan Fan ◽  
...  

The high cost and huge consumption of the Pt catalyst hinder the large-scale commercialization of fuel cells.

2017 ◽  
Vol 19 (11) ◽  
pp. 7751-7759 ◽  
Author(s):  
Manu Gautam ◽  
Mruthyunjayachari Chattanahalli Devendrachari ◽  
Ravikumar Thimmappa ◽  
Alagar Raja Kottaichamy ◽  
Shahid Pottachola Shafi ◽  
...  

Polarity governed amplification of fuel cell performance in graphene oxide-based proton exchange membrane fuel cells.


Author(s):  
Y. Zhou ◽  
G. Lin ◽  
A. J. Shih ◽  
S. J. Hu

Proton exchange membrane (PEM) fuel cells are favored in many applications due to their simplicity and relatively high power density. However, there has been a lack of understandings of the fundamental mechanisms of assembly and manufacturing induced phenomena and their influence on performance and durability. This paper presents a comprehensive analysis of assembly pressure induced phenomena in PEM fuel cells using multi-physics based modeling. A finite-element-based structural and mass-transfer model was developed by integrating mechanical deformation, mass transfer resistance, and electrical contact resistance to study the effects of assembly pressure and the fuel cell overall performance. Contact resistance, inhomogeneous deformation of membrane and GDL, electrochemical analysis were simulated. The fuel cell performance was predicted and an optimal assembly pressure was identified through this multi-physics model. Results show that PEM fuel cell performance first increases gradually to a maximum and then decreases with further assembly pressure increase. The influence of temperature and humidity on cell performance was also investigated.


2019 ◽  
Author(s):  
Valentina Guccini ◽  
Annika Carlson ◽  
Shun Yu ◽  
Göran Lindbergh ◽  
Rakel Wreland Lindström ◽  
...  

The performance of thin carboxylated cellulose nanofiber-based (CNF) membranes as proton exchange membranes in fuel cells has been measured in-situ as a function of CNF surface charge density (600 and 1550 µmol g<sup>-1</sup>), counterion (H<sup>+</sup>or Na<sup>+</sup>), membrane thickness and fuel cell relative humidity (RH 55 to 95 %). The structural evolution of the membranes as a function of RH as measured by Small Angle X-ray scattering shows that water channels are formed only above 75 % RH. The amount of absorbed water was shown to depend on the membrane surface charge and counter ions (Na<sup>+</sup>or H<sup>+</sup>). The high affinity of CNF for water and the high aspect ratio of the nanofibers, together with a well-defined and homogenous membrane structure, ensures a proton conductivity exceeding 1 mS cm<sup>-1</sup>at 30 °C between 65 and 95 % RH. This is two orders of magnitude larger than previously reported values for cellulose materials and only one order of magnitude lower than Nafion 212. Moreover, the CNF membranes are characterized by a lower hydrogen crossover than Nafion, despite being ≈ 30 % thinner. Thanks to their environmental compatibility and promising fuel cell performance the CNF membranes should be considered for new generation proton exchange membrane fuel cells.<br>


2017 ◽  
Vol 10 (1) ◽  
pp. 96-105 ◽  
Author(s):  
Mohammed Jourdani ◽  
Hamid Mounir ◽  
Abdellatif El Marjani

Background: During last few years, the proton exchange membrane fuel cells (PEMFCs) underwent a huge development. Method: The different contributions to the design, the material of all components and the efficiencies are analyzed. Result: Many technical advances are introduced to increase the PEMFC fuel cell efficiency and lifetime for transportation, stationary and portable utilization. Conclusion: By the last years, the total cost of this system is decreasing. However, the remaining challenges that need to be overcome mean that it will be several years before full commercialization can take place.This paper gives an overview of the recent advancements in the development of Proton Exchange Membrane Fuel cells and remaining challenges of PEMFC.


2021 ◽  
Vol 11 (14) ◽  
pp. 6348
Author(s):  
Zijun Yang ◽  
Bowen Wang ◽  
Xia Sheng ◽  
Yupeng Wang ◽  
Qiang Ren ◽  
...  

The dead-ended anode (DEA) and anode recirculation operations are commonly used to improve the hydrogen utilization of automotive proton exchange membrane (PEM) fuel cells. The cell performance will decline over time due to the nitrogen crossover and liquid water accumulation in the anode. Highly efficient prediction of the short-term degradation behaviors of the PEM fuel cell has great significance. In this paper, we propose a data-driven degradation prediction method based on multivariate polynomial regression (MPR) and artificial neural network (ANN). This method first predicts the initial value of cell performance, and then the cell performance variations over time are predicted to describe the degradation behaviors of the PEM fuel cell. Two cases of degradation data, the PEM fuel cell in the DEA and anode recirculation modes, are employed to train the model and demonstrate the validation of the proposed method. The results show that the mean relative errors predicted by the proposed method are much smaller than those by only using the ANN or MPR. The predictive performance of the two-hidden-layer ANN is significantly better than that of the one-hidden-layer ANN. The performance curves predicted by using the sigmoid activation function are smoother and more realistic than that by using rectified linear unit (ReLU) activation function.


2015 ◽  
Vol 3 (16) ◽  
pp. 8847-8854 ◽  
Author(s):  
Zhibin Guo ◽  
Ruijie Xiu ◽  
Shanfu Lu ◽  
Xin Xu ◽  
Shichun Yang ◽  
...  

A novel submicro-pore containing proton exchange membrane is designed and fabricated for application in high-temperature fuel cells.


Sign in / Sign up

Export Citation Format

Share Document