Shear-induced glass-to-crystal transition in anisotropic clay-like suspensions

Soft Matter ◽  
2021 ◽  
Author(s):  
Vincent Labalette ◽  
Alexis Praga ◽  
Florent Girard ◽  
Martine Meireles ◽  
Yannick Hallez ◽  
...  

A new numerical framework based on Stokesian dynamics is used to study a shear-induced glass-to-crystal transition in suspensions of clay-like anisotropically charged platelets.

2020 ◽  
Vol 16 (7) ◽  
pp. 950-959
Author(s):  
Yu Li ◽  
Xiangwen Kong ◽  
Fan Hu

Background: Clarithromycin is widely used for infections of helicobacter pylori. Clarithromycin belongs to polymorphic drug. Crystalline state changes of clarithromycin in sustained release tablets were found. Objective: The aim of this study was to find the influential factor of the crystal transition of clarithromycin in preparation process of sustained-release tablets and to investigate the possible interactions between the clarithromycin and pharmaceutical excipients. Methods and Results: The crystal transition of active pharmaceuticals ingredients from form II to form I in portion in clarithromycin sustained release tablets were confirmed by x-ray powder diffraction. The techniques including differential scanning calorimetry and infrared spectroscopy, x-ray powder diffraction were used for assessing the compatibility between clarithromycin and several excipients as magnesium stearate, lactose, sodium carboxymethyl cellulose, polyvinyl-pyrrolidone K-30 and microcrystalline cellulose. All of these methods showed compatibilities between clarithromycin and the selected excipients. Alcohol prescription simulation was also done, which showed incompatibility between clarithromycin and concentration alcohol. Conclusion: It was confirmed that the reason for the incompatibility of clarithromycin with high concentration of alcohol was crystal transition.


1992 ◽  
Vol 180-181 ◽  
pp. 167-169 ◽  
Author(s):  
P.A. Alekseev ◽  
V.N. Lazukov ◽  
V.G. Orlov ◽  
I.P. Sadikov ◽  
J.-B. Suck

2008 ◽  
Vol 99 (01) ◽  
pp. 108-115 ◽  
Author(s):  
Koichiro Yano ◽  
Ken-ichi Tsubota ◽  
Takuji Ishikawa ◽  
Shigeo Wada ◽  
Takami Yamaguchi ◽  
...  

SummaryWe propose a method to analyze platelet adhesion and aggregation computationally, taking into account the distinct properties of two plasma proteins, vonWillebrand factor (vWF) and fibrinogen (Fbg). In this method, the hydrodynamic interactions between platelet particles under simple shear flow were simulated using Stokesian dynamics based on the additivity of velocities. The binding force between particles mediated by vWF and Fbg was modeled using the Voigt model. Two Voigt models with different properties were introduced to consider the distinct behaviors of vWF and Fbg. Our results qualitatively agreed with the general observation of a previous in-vitro experiment, thus demonstrating that the significant development of thrombus formation in height requires not only vWF, but also Fbg. This agreement of simulation and experimental results qualitatively validates our model and suggests that consideration of the distinct roles of vWF and Fbg is essential to investigate the physiological and pathophysiological mechanisms of thrombus formation using a computational approach.


2015 ◽  
Vol 769 ◽  
pp. 369-386 ◽  
Author(s):  
A. Lefebvre-Lepot ◽  
B. Merlet ◽  
T. N. Nguyen

We address the problem of computing the hydrodynamic forces and torques among $N$ solid spherical particles moving with given rotational and translational velocities in Stokes flow. We consider the original fluid–particle model without introducing new hypotheses or models. Our method includes the singular lubrication interactions which may occur when some particles come close to one another. The main new feature is that short-range interactions are propagated to the whole flow, including accurately the many-body lubrication interactions. The method builds on a pre-existing fluid solver and is flexible with respect to the choice of this solver. The error is the error generated by the fluid solver when computing non-singular flows (i.e. with negligible short-range interactions). Therefore, only a small number of degrees of freedom are required and we obtain very accurate simulations within a reasonable computational cost. Our method is closely related to a method proposed by Sangani & Mo (Phys. Fluids, vol. 6, 1994, pp. 1653–1662) but, in contrast with the latter, it does not require parameter tuning. We compare our method with the Stokesian dynamics of Durlofsky et al. (J. Fluid Mech., vol. 180, 1987, pp. 21–49) and show the higher accuracy of the former (both by analysis and by numerical experiments).


2010 ◽  
Vol 79 (4) ◽  
pp. 882-889 ◽  
Author(s):  
Kayoko Kobayashi ◽  
Satoshi Kimura ◽  
Eiji Togawa ◽  
Masahisa Wada

2021 ◽  
Vol 925 ◽  
Author(s):  
Emma Gonzalez ◽  
Christian Aponte-Rivera ◽  
Roseanna N. Zia

We present a computational study of the equilibrium dynamics of a polydisperse hard-sphere colloidal dispersion confined in a spherical cavity. We account for many-body hydrodynamic and lubrication interactions between particles and with the confining cavity utilizing our confined Stokesian dynamics model, expanded here for size polydispersity. We find that, even though the tendency of polydispersity to homogenize structure in a suspension is still present in confinement, strong correlations induced by the cavity resist homogenization. Although seemingly opposite, these two effects have a common driver, which is to maximize configurational entropy of particles in the cavity interior. These structural effects couple with the hydrodynamics to change the particle dynamics: polydispersity weakens lubrication effects near the cavity wall, allowing small (large) particles to diffuse faster (slower) than in a monodisperse suspension. As a small (large) particle gets farther from the wall, polydispersity weakens many-body hydrodynamic couplings, driving diffusivity up (down). While the local cage dynamics dominates short-time self-diffusion, long-time dynamics is also affected. In the concentrated regime, polydispersity and confinement combine to induce radial de-mixing into size-segregated populations. The cavity becomes the most influential ‘nearest neighbour’, setting the length scale of and dynamics within these radial domains. This intermediate length-scale caging makes the angular dynamics insensitive to polydispersity but leads to radial long-time mean-square displacement that changes qualitatively with volume composition. These results hold promise for explaining colloidal-scale physics implicated in the functioning of biological cells, and the engineering of non-living confined colloids where size de-mixing could be useful in the design of encapsulated micro-reactors and therapeutic vesicles.


Sign in / Sign up

Export Citation Format

Share Document