Fluorinated pyrazine-based D–A conjugated polymers for efficient non-fullerene polymer solar cells

2020 ◽  
Vol 8 (15) ◽  
pp. 7083-7089 ◽  
Author(s):  
Kai Chen ◽  
Ruijie Ma ◽  
Tao Liu ◽  
Zhenghui Luo ◽  
Xiaopeng Xu ◽  
...  

Over the past decade, fluorinated materials have become the dominant donors for achieving high power conversion efficiencies in organic solar cells (OSCs).

Author(s):  
Shreyam Chatterjee ◽  
Seihou JINNAI ◽  
Yutaka Ie

Progressive advancement of remarkably high power conversion efficiencies (PCEs) of organic solar cells (OSCs) largely depends on the development of norfullerene acceptors (NFAs), revealing stupendous ability of OSCs to shift...


Nanoscale ◽  
2021 ◽  
Author(s):  
Congcong Zhao ◽  
Jiuxing Wang ◽  
Xuanyi Zhao ◽  
Zhonglin Du ◽  
Renqiang Yang ◽  
...  

The past decade has seen a tremendous development of organic solar cells (OSCs). To date, the high-performance OSCs have boosted the power conversion efficiencies (PCEs) over 17%, showing bright prospects...


2021 ◽  
Author(s):  
Haifen Liu ◽  
Zixuan Zhu ◽  
Huafeng Li ◽  
Weili Fan ◽  
Kaihua Ning ◽  
...  

Non-fullerene acceptors have received a great deal of attention over the past several years, and numerous modifications on the molecular structures significantly boosted the power conversion efficiencies (PCEs). To be...


2021 ◽  
Author(s):  
Zhaofan Yang ◽  
Shijie Liang ◽  
Baiqiao Liu ◽  
Jing Wang ◽  
Fan Yang ◽  
...  

Single-component organic solar cells (SCOSCs) have been recognized as the promising photovoltaic technology due to the excellent stability, but their power conversion efficiencies (PCEs) are far lagging their bulk-heterojunction counterparts....


2012 ◽  
Vol 5 (8) ◽  
pp. 8343 ◽  
Author(s):  
Jonathan D. Servaites ◽  
Brett M. Savoie ◽  
Joseph B. Brink ◽  
Tobin J. Marks ◽  
Mark A. Ratner

2012 ◽  
Vol 134 (33) ◽  
pp. 13616-13623 ◽  
Author(s):  
Yi-Hong Chen ◽  
Li-Yen Lin ◽  
Chih-Wei Lu ◽  
Francis Lin ◽  
Zheng-Yu Huang ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (112) ◽  
pp. 92312-92317 ◽  
Author(s):  
Liangang Xiao ◽  
Chang Liu ◽  
Ke Gao ◽  
Yajing Yan ◽  
Junbiao Peng ◽  
...  

Fabricated with non-halogenated solvents toluene and o-xylene, the bulk-heterojunction organic solar cells based on a porphyrin small molecule show high power conversion efficiencies up to 5.46% and 5.85%, respectively.


Author(s):  
Minkyu Kyeong ◽  
Jinho Lee ◽  
Matyas Daboczi ◽  
Katherine Stewart ◽  
Huifeng Yao ◽  
...  

Functionalized polyethyleneimines that are compatible with non-fullerene acceptors have been developed by protecting the reactive amine groups, leading to non-fullerene solar cells with high power conversion efficiency and enhanced thermal stability.


RSC Advances ◽  
2014 ◽  
Vol 4 (92) ◽  
pp. 50988-50992 ◽  
Author(s):  
Tao Yuan ◽  
Dong Yang ◽  
Xiaoguang Zhu ◽  
Lingyu Zhou ◽  
Jian Zhang ◽  
...  

The power conversion efficiency of a PTB7:PC71BM polymer solar cell was improved up to 9.1% by a combination of methanol treatment followed by conjugation of a water- or alcohol-soluble polyelectrolyte thin layer.


2016 ◽  
Vol 3 (2) ◽  
pp. 222-239 ◽  
Author(s):  
Fengling Zhang ◽  
Olle Inganäs ◽  
Yinhua Zhou ◽  
Koen Vandewal

Abstract Global efforts and synergetic interdisciplinary collaborations on solution-processed bulk-heterojunction polymer solar cells (PSCs or OPVs) made power conversion efficiencies over 10% possible. The rapid progress of the field is credited to the synthesis of a large number of novel polymers with specially tunable optoelectronic properties, a better control over the nano-morphology of photoactive blend layers, the introduction of various effective interfacial layers, new device architectures and a deeper understanding of device physics. We will review the pioneering materials for polymer–fullerene solar cells and trace the progress of concepts driving their development. We discuss the evolution of morphology control, interfacial layers and device structures fully exploring the potential of photoactive materials. In order to guide a further increase in power conversion efficiency of OPV, the current understanding of the process of free charge carrier generation and the origin of the photovoltage is summarized followed by a perspective on how to overcome the limitations for industrializing PSCs.


Sign in / Sign up

Export Citation Format

Share Document