The origin of heavy element doping to relieve the lattice thermal vibration of layered materials for high energy density Li ion cathodes

2020 ◽  
Vol 8 (25) ◽  
pp. 12424-12435
Author(s):  
Ruirui Zhao ◽  
Jiliang Zhang ◽  
Gi-Hyeok Lee ◽  
Kai Zhang ◽  
Vincent Wing-hei Lau ◽  
...  

We report an effective strategy to inhibit the phase transition of LiCoO2 from hexagonal layered to cubic spinel during delithiation. The small thermal vibration amplitude of the Sn dopant helps pin the lattice vibration, stabilizing CoO6 octahedra during charge/discharge.

2019 ◽  
Author(s):  
Yamin Zhang ◽  
Lina Chen ◽  
Chongyang Hao ◽  
Xiaowen Zheng ◽  
Yixuan Guo ◽  
...  

For the applications of aqueous Li-ion hybrid capacitors and Na-ion hybrid capacitors, potassium ions are pre-inserted into MnO<sub>2</sub> tunnel structure, the as-prepared K<sub>1.04</sub>Mn<sub>8</sub>O<sub>16</sub> materials consist of <a>nanoparticles</a> and nanorods were prepared by facile high-temperature solid-state reaction. <a></a>The as-prepared materials were well studied andthey show outstanding electrochemical behavior. We assembled hybrid supercapacitors with commercial activated carbon (YEC-8A) as anode and K<sub>1.04</sub>Mn<sub>8</sub>O<sub>16 </sub>as cathode. It has high energy densities and power densities. Li-ion capacitors reach a high energy density of 127.61 Wh kg<sup>-1 </sup>at the power density of 99.86 W kg<sup>-1</sup> and Na-ion capacitor obtains 170.96 Wh kg<sup>-1 </sup>at 133.79 W kg<sup>-1</sup>. In addition, the <a>hybrid supercapacitor</a>s demonstrate excellent cycling performance which maintain 97 % capacitance retention for Li-ion capacitor and 85 % for Na-ion capacitor after 10,000 cycles.


2021 ◽  
Vol 9 (14) ◽  
pp. 9337-9346
Author(s):  
Erhong Song ◽  
Yifan Hu ◽  
Ruguang Ma ◽  
Yining Li ◽  
Xiaolin Zhao ◽  
...  

Li-rich layered cathodes based on Li2MnO3 have exhibited extraordinary promise to satisfy the rapidly increasing demand for high-energy density Li-ion batteries.


2021 ◽  
Vol 415 ◽  
pp. 128509
Author(s):  
Qihang Yu ◽  
Wu Tang ◽  
Yang Hu ◽  
Jian Gao ◽  
Ming Wang ◽  
...  

2019 ◽  
Vol 17 ◽  
pp. 136-142 ◽  
Author(s):  
Changmin Shi ◽  
Tianyang Wang ◽  
Xiangbiao Liao ◽  
Boyu Qie ◽  
Pengfei Yang ◽  
...  

2011 ◽  
Vol 282-283 ◽  
pp. 82-85
Author(s):  
Xiao Peng Ji ◽  
Xing Feng Guan ◽  
Zhen Hong Wang

Li-ion batteries have been widely used. However, the safety concern is always serious due to its high energy density. In order to improve the safety of the batteries, it is necessary to use the protection integration circuit. In this article, the concept for realizing the safety protection of Li-ion batteries during charging and discharging is described briefly. A circuit design using Seiko BMS chip S-8209 is purposed. Based on this, a simulation was performed and verified using Pspice program, which provides a theoretical basis for the circuit design.


2021 ◽  
Vol 22 (20) ◽  
pp. 11041
Author(s):  
Yajing Yan ◽  
Yanxu Chen ◽  
Yongyan Li ◽  
Xiaoyu Wu ◽  
Chao Jin ◽  
...  

By virtue of the high theoretical capacity of Si, Si-related materials have been developed as promising anode candidates for high-energy-density batteries. During repeated charge/discharge cycling, however, severe volumetric variation induces the pulverization and peeling of active components, causing rapid capacity decay and even development stagnation in high-capacity batteries. In this study, the Si/Fe2O3-anchored rGO framework was prepared by introducing ball milling into a melt spinning and dealloying process. As the Li-ion battery (LIB) anode, it presents a high reversible capacity of 1744.5 mAh g−1 at 200 mA g−1 after 200 cycles and 889.4 mAh g−1 at 5 A g−1 after 500 cycles. The outstanding electrochemical performance is due to the three-dimensional cross-linked porous framework with a high specific surface area, which is helpful to the transmission of ions and electrons. Moreover, with the cooperation of rGO, the volume expansion of Si is effectively alleviated, thus improving cycling stability. The work provides insights for the design and preparation of Si-based materials for high-performance LIB applications.


2018 ◽  
Vol 6 (7) ◽  
pp. 3134-3140 ◽  
Author(s):  
Ji Eon Kwon ◽  
Chang-Seok Hyun ◽  
Young Jun Ryu ◽  
Joungphil Lee ◽  
Dong Joo Min ◽  
...  

Triptycene bearing three benzoquinone moieties in a rigid 3-D tripod structure is capable of utilizing five-electron redox reactions that can provide a large capacity and high energy density in Li-ion cells.


Sign in / Sign up

Export Citation Format

Share Document