Simultaneous high efficiency/CRI/spectral stability and low efficiency roll-off hybrid white organic light-emitting diodes via simple insertion of ultrathin red/green phosphorescent emitters in a blue exciplex

2020 ◽  
Vol 8 (36) ◽  
pp. 12450-12456 ◽  
Author(s):  
Yuwen Chen ◽  
Yibing Wu ◽  
Chengwei Lin ◽  
Yanfeng Dai ◽  
Qian Sun ◽  
...  

High performance hybrid WOLEDs have been realized by precisely inserting ultrathin red/green phosphorescent layers in a blue exciplex emitter.

2018 ◽  
Vol 6 (40) ◽  
pp. 10793-10803 ◽  
Author(s):  
Shian Ying ◽  
Dezhi Yang ◽  
Xianfeng Qiao ◽  
Yanfeng Dai ◽  
Qian Sun ◽  
...  

High-performance WOLEDs realizing high efficiency and low efficiency roll-off simultaneously were achieved by strategically managing triplet excitons in the emission layer.


Molecules ◽  
2019 ◽  
Vol 24 (1) ◽  
pp. 211
Author(s):  
Ren Sheng ◽  
Ying Gao ◽  
Asu Li ◽  
Yu Duan ◽  
Yi Zhao ◽  
...  

We demonstrate high-efficiency white phosphorescent organic light-emitting diodes with low efficiency roll-off. The feature of the device concept is employing two phosphorescent emission layers (EMLs) separated by a mixed interlayer. Both the EMLs are doped by two phosphorescent dyes. The resulting white device with the optimized doping concentration shows a maximum efficiency of 31.0 cd/A with extremely low efficiency roll-off of 30.7 cd/A at 1000 cd/m2, 27.2 cd/A at 5000 cd/m2, and 25.5 cd/A at 10,000 cd/m2, respectively, without any outcoupling structures. This is enabled by the balanced charge carrier transport in EMLs, leading to broader exciton recombination zone.


2020 ◽  
Vol 976 ◽  
pp. 110-115
Author(s):  
Fei Yang Liu ◽  
Bin Wei ◽  
Guo Chen

Recently the phosphorescent organic light-emitting diodes (PhOLEDs) have attracted tremendous attention owing to their extremely high performance. However, PhOLEDs always suffer from the annihilation and quenching of excitons due to higher guest doping concentration. In this work, to obtain a high efficiency red PhOLED, a gradient-doped emitting layer (EML) was employed in the device to improve the device efficiency and suppress the annihilation of excitons. A significant enhancement in terms of current efficiency (CE) and power efficiency (PE) of PhOLEDs with optimized gradient-doped EML was realized with the maximum CE of 13.84 cd A-1 and PE of 18.11 lm W−1, which are 33.9% and 60.7% higher than that of the control device, respectively. The enhanced performance of the PhOLEDs is attributed to the lower guest doping concentration in gradient-doped EML and balanced hole/electron recombination, leading to the reduced triplet-triplet annihilation and triplet-polaron quenching. The simple strategy opens a new avenue for fabricating high-performance PhOLEDs.


2019 ◽  
Vol 33 (24) ◽  
pp. 1950284
Author(s):  
Nan Zhang ◽  
Yang Chen ◽  
Yan-Hui Wang

It has been demonstrated that high efficiency and brightness can be achieved in phosphorescent organic light-emitting diodes (PHOLEDs) by using molybdenum oxide (MoO3)/poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) as dual hole injection layers (HILs) on indium tin oxide (ITO) substrate. The dual HILs were simply fabricated by spin-coating PEDOT:PSS solution on a thin MoO3 layer deposited by vacuum thermal evaporation. This work reveals that PEDOT:PSS coating on MoO3 resulted in a smoother surface, simultaneously MoO3 lamella prevented acid corrosion of PEDOT:PSS on ITO. Meanwhile, with the insertion of PEDOT:PSS and MoO3 as HILs between anode and hole transporting layer (HTL), the energy barrier has been reduced and gave rise to effective hole injection. OLEDs with dual HILs resulted in the maximum current efficiency (CE) of 61.3 cd A[Formula: see text] and maximum luminance of 112200 cd cm[Formula: see text], which showed a superior performance compared to those devices with single HIL of PEDOT:PSS or MoO3. Our results proved the composition of PEDOT:PSS and MoO3 as HILs were beneficial for high performance OLEDs.


Sign in / Sign up

Export Citation Format

Share Document