A stable well-defined copper hydride cluster consolidated with hemilabile phosphines

2021 ◽  
Author(s):  
Shang-Fu Yuan ◽  
Heng-Wang Luyang ◽  
Zhen Lei ◽  
Xiankai Wan ◽  
Jiao-Jiao Li ◽  
...  

Copper hydrides are very useful in hydrogenation reactions. We report a stable Stryker-type copper hydride reagent protected by hemilabile phosphines: [Cu8H6(dppy)6](OTf)2 (Cu8-H, dppy = diphenylphoshpino-2-pyridine). The metal core of this...

Author(s):  
Dewmi A. Ekanayake ◽  
Arundhoti Chakraborty ◽  
Jeanette A. Krause ◽  
Hairong Guan

Hydrogenation of aldehydes and ketones can be catalyzed by a PNP-ligated copper hydride that is accessible from the copper borohydride or bromide complex or the copper hydride cluster.


2018 ◽  
Vol 14 (1) ◽  
pp. 1
Author(s):  
Prof. Dr. Jamal Aziz Mehdi

The biological objectives of root canal treatment have not changed over the recentdecades, but the methods to attain these goals have been greatly modified. Theintroduction of NiTi rotary files represents a major leap in the development ofendodontic instruments, with a wide variety of sophisticated instruments presentlyavailable (1, 2).Whatever their modification or improvement, all of these instruments have onething in common: they consist of a metal core with some type of rotating blade thatmachines the canal with a circular motion using flutes to carry the dentin chips anddebris coronally. Consequently, all rotary NiTi files will machine the root canal to acylindrical bore with a circular cross-section if the clinician applies them in a strictboring manner


2001 ◽  
Vol 66 (7) ◽  
pp. 1062-1077 ◽  
Author(s):  
Maarten J. Bakker ◽  
Tapani A. Pakkanen ◽  
František Hartl

Electrochemical properties of tetrahedral clusters [H2Ru2Rh2(CO)12], [HRuRh3(CO)12] and [Rh4(CO)12] were investigated in order to evaluate the influence of metal core composition in the series [H4-xRu4-xRhx(CO)12] (x = 0-4). The cluster [H3Ru3Rh(CO)12] was not available in sufficient quantities. As reported for [H4Ru4(CO)12], electrochemical reduction of the hydride-containing clusters [H2Ru2Rh2(CO)12] and [HRuRh3(CO)12] also results in (stepwise) loss of hydrogen, producing the anions [HRu2Rh2(CO)12]-, [Ru2Rh2(CO)12]2- and [RuRh3(CO)12]-. These anions can also be prepared from the neutral parent clusters via chemical routes. Electrochemical reduction of [Rh4(CO)12] does not result in the formation of any stable tetranuclear anion. Instead, [Rh5(CO)15]- and [Rh6(CO)15]2- are the major reduction products detected in the course of IR spectroelectrochemical experiments. Most likely, these cluster species are formed from the secondary CO-loss product [Rh4(CO)11]2- by fast redox condensation reactions. Their reoxidation regenerates parent [Rh4(CO)12], together with some [Rh6(CO)16]. Unlike [H4Ru4(CO)12] that undergoes photochemical CO-dissociation, [H2Ru2Rh2(CO)12] and [Rh4(CO)12] are completely photostable in neat hexane and dichloromethane as well as in the presence of oct-1-ene.


Author(s):  
Rhone P. Brocha Silalahi ◽  
Tzu-Hao Chiu ◽  
Jhen-Heng Kao ◽  
Chun-Yen Wu ◽  
Chi-Wei Yin ◽  
...  

Nanoscale ◽  
2021 ◽  
Author(s):  
Wei Bing ◽  
Faming Wang ◽  
Yuhuan Sun ◽  
Jinsong Ren ◽  
Xiaogang Qu

An environmentally friendly biomimetic strategy has been presented and validated for the catalytic hydrogenation reaction in live bacteria. In situ formed ultra-fine metal nanoparticles can realize highly efficient asymmetric hydrogenation reactions.


Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 656
Author(s):  
Henrietta Kovács ◽  
Krisztina Orosz ◽  
Gábor Papp ◽  
Ferenc Joó ◽  
Henrietta Horváth

Na2[Ir(cod)(emim)(mtppts)] (1) with high catalytic activity in various organic- and aqueous-phase hydrogenation reactions was immobilized on several types of commercially available ion-exchange supports. The resulting heterogeneous catalyst was investigated in batch reactions and in an H-Cube flow reactor in the hydrogenation of phenylacetylene, diphenylacetylene, 1-hexyne, and benzylideneacetone. Under proper conditions, the catalyst was highly selective in the hydrogenation of alkynes to alkenes, and demonstrated excellent selectivity in C=C over C=O hydrogenation; furthermore, it displayed remarkable stability. Activity of 1 in hydrogenation of levulinic acid to γ-valerolactone was also assessed.


Sign in / Sign up

Export Citation Format

Share Document