Evolution of crystal structure of dual layered molecular conductor (ET)4ZnBr4(C6H4Cl2) with temperature

CrystEngComm ◽  
2021 ◽  
Author(s):  
Gennady V. Shilov ◽  
Elena I. Zhilyaeva ◽  
Sergey M. Aldoshin ◽  
Alexandra M Flakina ◽  
Rustem B. Lyubovskii ◽  
...  

Electrical resistivity measurements of a dual layered organic conductor (ET)4ZnBr4(1,2-C6H4Cl2) above room temperature show abrupt changes in resistivity at 320 K. Single-crystal X-ray diffraction studies in the 100-350 K range...

2020 ◽  
Vol 151 (9) ◽  
pp. 1317-1328
Author(s):  
Matthias Weil ◽  
Berthold Stöger

Abstract The caesium phosphates Cs3(H1.5PO4)2(H2O)2 and Cs3(H1.5PO4)2 were obtained from aqueous solutions, and Cs4P2O7(H2O)4 and CsPO3 from solid state reactions, respectively. Cs3(H1.5PO4)2, Cs4P2O7(H2O)4, and CsPO3 were fully structurally characterized for the first time on basis of single-crystal X-ray diffraction data recorded at − 173 °C. Monoclinic Cs3(H1.5PO4)2 (Z = 2, C2/m) represents a new structure type and comprises hydrogen phosphate groups involved in the formation of a strong non-symmetrical hydrogen bond (accompanied by a disordered H atom over a twofold rotation axis) and a very strong symmetric hydrogen bond (with the H atom situated on an inversion centre) with symmetry-related neighbouring anions. Triclinic Cs4P2O7(H2O)4 (Z = 2, P$$\bar{1}$$ 1 ¯ ) crystallizes also in a new structure type and is represented by a diphosphate group with a P–O–P bridging angle of 128.5°. Although H atoms of the water molecules were not modelled, O···O distances point to hydrogen bonds of medium strengths in the crystal structure. CsPO3 is monoclinic (Z = 4, P21/n) and belongs to the family of catena-polyphosphates (MPO3)n with a repetition period of 2. It is isotypic with the room-temperature modification of RbPO3. The crystal structure of Cs3(H1.5PO4)2(H2O)2 was re-evaluated on the basis of single-crystal X-ray diffraction data at − 173 °C, revealing that two adjacent hydrogen phosphate anions are connected by a very strong and non-symmetrical hydrogen bond, in contrast to the previously described symmetrical bonding situation derived from room temperature X-ray diffraction data. In the four title crystal structures, coordination numbers of the caesium cations range from 7 to 12. Graphic abstract


2000 ◽  
Vol 56 (4) ◽  
pp. 738-743
Author(s):  
Jan Dillen ◽  
Martin W. Bredenkamp ◽  
Mare-Loe Prinsloo

The crystal structure of 5-O-tert-butyldimethylsilyl-3,4-O-carbonyl-1,2-O-cyclohexylidene-2-oxo-3-oxa-4-bornanylcarbonyl-D-myo-inositol has been studied by single-crystal X-ray diffraction at both room temperature and 173 K. At room temperature, the tert-butyldimethylsilyl group exhibits dynamical disorder. A molecular dynamics simulation was used to model the disorder and this indicates that the group librates between two stable conformations in the crystal. Approximate relative energies of the different forms and energy barriers for the transition were obtained by empirical force field methods. Calculations of the thermal motion of the atoms are in good qualitative, but fair to poor quantitative agreement with the X-ray data.


2004 ◽  
Vol 82 (2) ◽  
pp. 301-305 ◽  
Author(s):  
Kenneth CW Chong ◽  
Brian O Patrick ◽  
John R Scheffer

When crystals of 9-tricyclo[4.4.1.0]undecalyl-4-(carbomethoxy)phenyl ketone (1) were allowed to stand in the dark for extended periods of time at room temperature, the compound underwent a thermal reaction — the enolene rearrangement — to afford enol 2. The crystals remained transparent and appeared unchanged in shape as the reaction proceeded. X-ray diffraction data were collected on single crystals containing 17%, 25%, 66%, and 100% of the enol. The crystal structure of a simple enol was obtained via this novel single-crystal-to-single-crystal enolene rearrangement.Key words: single crystal, thermal, rearrangement, enol, enolene.


1998 ◽  
Vol 54 (1) ◽  
pp. 18-28 ◽  
Author(s):  
D. L. Corker ◽  
A. M. Glazer ◽  
W. Kaminsky ◽  
R. W. Whatmore ◽  
J. Dec ◽  
...  

The room-temperature crystal structure of the perovskite lead hafnate PbHfO3 is investigated using both low-temperature single crystal X-ray diffraction (Mo Kα radiation, λ = 0.71069 Å) and polycrystalline neutron diffraction (D1A instrument, ILL, λ = 1.90788 Å). Single crystal X-ray data at 100 K: space group Pbam, a = 5.856 (1), b = 11.729 (3), c = 8.212 (2) Å, V = 564.04 Å3 with Z = 8, μ = 97.2 mm−1, F(000) = 1424, final R = 0.038, wR = 0.045 over 439 reflections with F >1.4σ(F). Polycrystalline neutron data at 383 K: a = 5.8582 (3), b = 11.7224 (5), c = 8.2246 (3) Å, V = 564.80 Å3 with χ2 = 1.62. Although lead hafnate has been thought to be isostructural with lead zirconate, no complete structure determination has been reported, as crystal structure analysis in both these materials is not straightforward. One of the main difficulties encountered is the determination of the oxygen positions, as necessary information lies in extremely weak l = 2n + 1 X-ray reflections. To maximize the intensity of these reflections the X-ray data are collected at 100 K with unusually long scans, a procedure which had previously been found successful with lead zirconate. In order to establish that no phase transitions exist between room temperature and 100 K, and hence that the collected X-ray data are relevant to the room-temperature structure, birefringence measurements for both PbZrO3 and PbHfO3 are also reported.


Author(s):  
Thu Hoai Le ◽  
Neil R. Brooks ◽  
Koen Binnemans ◽  
Bart Blanpain ◽  
Muxing Guo ◽  
...  

The title compound, Ca2+xNd8–x(SiO4)6O2–0.5x(x= 0.49), was synthesized at 1873 K and rapidly quenched to room temperature. Its structure has been determined using single-crystal X-ray diffraction and compared with results reported using neutron and X-ray powder diffraction from samples prepared by slow cooling. The single-crystal structure from room temperature data was found to belong to the space groupP63/mand has the composition Ca2.49Nd7.51(SiO4)6O1.75[dicalcium octaneodymium hexakis(orthosilicate) dioxide], being isotypic with natural apatite and the previously reported Ca2Nd8(SiO4)6O2and Ca2.2Nd7.8(SiO4)6O1.9. The solubility limit of calcium in the equilibrium state at 1873 K was found to occur at a composition of Ca2+xNd8–x(SiO4)6O2–0.5x, wherex= 0.49.


1998 ◽  
Vol 545 ◽  
Author(s):  
K. J. Proctor ◽  
F. J. DiSalvo

AbstractSingle crystals of the known ternary cerium intermetallic Ce5Cu19P12were grown by Sn flux and I2transport methods. The long axis of the black hexagonal needles was confirmed to be the c-axis by single crystal X-ray diffraction. Electrical resistivity of both single crystals and a pressed pellet was measured from 4 - 300 K; the room temperature resistivity is about 400 μΩ-cm for the needle axis of the crystals and about 5 mΩ-cm for the pressed pellet. The thermopower of the pressed pellet was found to be 34 μV/K at room temperature.


1983 ◽  
Vol 36 (8) ◽  
pp. 1527 ◽  
Author(s):  
BN Figgis ◽  
ES Kucharski ◽  
AH White

The crystal structure of the title compound, [CO(C15H11N3)2] 12.2H2O, has been determined by single crystal X-ray diffraction methods at 295 K and at 120 K, being refined by least squares to residuals of 0.051 and 0.035 respectively for 982 and 1024 'observed' reflections at these temperatures. Both structures are based on a P42/n tetragonal cell, a c. 8.9, c c. 19.4 �, Z 2, in which only a quarter of the cation is independent, being located about a site of 4 symmetry. At room temperature (μoff c. 3.2 BM) Co-N (central, distal) are 1.942(7), 2.104(5) � diminishing to 1.912(5), 2.083(4) � at 120 K, with μoff c. 2.2 BM, corresponding to a fully populated low-spin ground state.


Sign in / Sign up

Export Citation Format

Share Document