Extensive Evaluation of Environment-specific Force Field for Ordered and Disordered Proteins

Author(s):  
Xiaocheng Cui ◽  
Hao Liu ◽  
Ashfaq Ur Rehman ◽  
Haifeng Chen

Intrinsically disordered proteins (IDPs) have not fixed tertiary structure under physiology condition and associate with many human diseases. Because IDPs have the characters of diverse conformation, current experimental methods can...

Author(s):  
Bin Chong ◽  
Yingguang Yang ◽  
Zi-Le Wang ◽  
Han Xing ◽  
Zhirong Liu

Intrinsically disordered proteins (IDPs) widely involve in human diseases and are thus attractive therapeutic targets. In practice, however, it is computationally prohibitive to dock large ligand libraries to thousands and...


2016 ◽  
Vol 110 (3) ◽  
pp. 556a
Author(s):  
Davide Mercadante ◽  
Sigrid Milles ◽  
Gustavo Fuertes ◽  
Dmitri Svergun ◽  
Edward A. Lemke ◽  
...  

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Jing Li ◽  
Jordan T White ◽  
Harry Saavedra ◽  
James O Wrabl ◽  
Hesam N Motlagh ◽  
...  

Intrinsically disordered proteins (IDPs) present a functional paradox because they lack stable tertiary structure, but nonetheless play a central role in signaling, utilizing a process known as allostery. Historically, allostery in structured proteins has been interpreted in terms of propagated structural changes that are induced by effector binding. Thus, it is not clear how IDPs, lacking such well-defined structures, can allosterically affect function. Here, we show a mechanism by which an IDP can allosterically control function by simultaneously tuning transcriptional activation and repression, using a novel strategy that relies on the principle of ‘energetic frustration’. We demonstrate that human glucocorticoid receptor tunes this signaling in vivo by producing translational isoforms differing only in the length of the disordered region, which modulates the degree of frustration. We expect this frustration-based model of allostery will prove to be generally important in explaining signaling in other IDPs.


2017 ◽  
Vol 112 (3) ◽  
pp. 175a-176a ◽  
Author(s):  
Jing Huang ◽  
Sarah Rauscher ◽  
Grzegorz Nawrocki ◽  
Ting Ran ◽  
Michael Feig ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document