scholarly journals Genetically tunable frustration controls allostery in an intrinsically disordered transcription factor

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Jing Li ◽  
Jordan T White ◽  
Harry Saavedra ◽  
James O Wrabl ◽  
Hesam N Motlagh ◽  
...  

Intrinsically disordered proteins (IDPs) present a functional paradox because they lack stable tertiary structure, but nonetheless play a central role in signaling, utilizing a process known as allostery. Historically, allostery in structured proteins has been interpreted in terms of propagated structural changes that are induced by effector binding. Thus, it is not clear how IDPs, lacking such well-defined structures, can allosterically affect function. Here, we show a mechanism by which an IDP can allosterically control function by simultaneously tuning transcriptional activation and repression, using a novel strategy that relies on the principle of ‘energetic frustration’. We demonstrate that human glucocorticoid receptor tunes this signaling in vivo by producing translational isoforms differing only in the length of the disordered region, which modulates the degree of frustration. We expect this frustration-based model of allostery will prove to be generally important in explaining signaling in other IDPs.

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Andrei Vovk ◽  
Chad Gu ◽  
Michael G Opferman ◽  
Larisa E Kapinos ◽  
Roderick YH Lim ◽  
...  

Nuclear Pore Complexes (NPCs) are key cellular transporter that control nucleocytoplasmic transport in eukaryotic cells, but its transport mechanism is still not understood. The centerpiece of NPC transport is the assembly of intrinsically disordered polypeptides, known as FG nucleoporins, lining its passageway. Their conformations and collective dynamics during transport are difficult to assess in vivo. In vitro investigations provide partially conflicting results, lending support to different models of transport, which invoke various conformational transitions of the FG nucleoporins induced by the cargo-carrying transport proteins. We show that the spatial organization of FG nucleoporin assemblies with the transport proteins can be understood within a first principles biophysical model with a minimal number of key physical variables, such as the average protein interaction strengths and spatial densities. These results address some of the outstanding controversies and suggest how molecularly divergent NPCs in different species can perform essentially the same function.


Author(s):  
Evert Njomen ◽  
Theresa A. Lansdell ◽  
Allison Vanecek ◽  
Vanessa Benham ◽  
Matt P. Bernard ◽  
...  

SUMMARYEnhancing proteasome activity is a potential new therapeutic strategy to prevent the accumulation of aberrant high levels of protein that drive the pathogenesis of many diseases. Herein, we examine the use of small molecules to activate the 20S proteasome to reduce aberrant signaling by the undruggable oncoprotein c-MYC, to treat c-MYC driven oncogenesis. Overexpression of c-MYC is found in more than 50% of all human cancer but remains undruggable because of its highly dynamic intrinsically disordered 3-D conformation, which renders traditional therapeutic strategies largely ineffective. We demonstrate herein that small molecule activation of the 20S proteasome targets dysregulated intrinsically disordered proteins (IDPs), including c-MYC, and reduces cancer growth in vitro and in vivo models of multiple myeloma, and is even effective in bortezomib resistant cells and unresponsive patient samples. Genomic analysis of various cancer pathways showed that proteasome activation results in downregulation of many c-MYC target genes. Moreover, proteasome enhancement was well tolerated in mice and dogs. These data support the therapeutic potential of 20S proteasome activation in targeting IDP-driven proteotoxic disorders, including cancer, and demonstrate that this new therapeutic strategy is well tolerated in vivo.


2021 ◽  
Author(s):  
Pétur O. Heidarsson ◽  
Ciro Cecconi

Abstract Single-molecule manipulation with optical tweezers has uncovered macromolecular behaviour hidden to other experimental techniques. Recent instrumental improvements have made it possible to expand the range of systems accessible to optical tweezers. Beyond focusing on the folding and structural changes of isolated single molecules, optical tweezers studies have evolved into unraveling the basic principles of complex molecular processes such as co-translational folding on the ribosome, kinase activation dynamics, ligand–receptor binding, chaperone-assisted protein folding, and even dynamics of intrinsically disordered proteins (IDPs). In this mini-review, we illustrate the methodological principles of optical tweezers before highlighting recent advances in studying complex protein conformational dynamics – from protein synthesis to physiological function – as well as emerging future issues that are beginning to be addressed with novel approaches.


2020 ◽  
Vol 117 (21) ◽  
pp. 11421-11431 ◽  
Author(s):  
Benjamin S. Schuster ◽  
Gregory L. Dignon ◽  
Wai Shing Tang ◽  
Fleurie M. Kelley ◽  
Aishwarya Kanchi Ranganath ◽  
...  

Phase separation of intrinsically disordered proteins (IDPs) commonly underlies the formation of membraneless organelles, which compartmentalize molecules intracellularly in the absence of a lipid membrane. Identifying the protein sequence features responsible for IDP phase separation is critical for understanding physiological roles and pathological consequences of biomolecular condensation, as well as for harnessing phase separation for applications in bioinspired materials design. To expand our knowledge of sequence determinants of IDP phase separation, we characterized variants of the intrinsically disordered RGG domain from LAF-1, a model protein involved in phase separation and a key component of P granules. Based on a predictive coarse-grained IDP model, we identified a region of the RGG domain that has high contact probability and is highly conserved between species; deletion of this region significantly disrupts phase separation in vitro and in vivo. We determined the effects of charge patterning on phase behavior through sequence shuffling. We designed sequences with significantly increased phase separation propensity by shuffling the wild-type sequence, which contains well-mixed charged residues, to increase charge segregation. This result indicates the natural sequence is under negative selection to moderate this mode of interaction. We measured the contributions of tyrosine and arginine residues to phase separation experimentally through mutagenesis studies and computationally through direct interrogation of different modes of interaction using all-atom simulations. Finally, we show that despite these sequence perturbations, the RGG-derived condensates remain liquid-like. Together, these studies advance our fundamental understanding of key biophysical principles and sequence features important to phase separation.


Cells ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1856
Author(s):  
Nikoletta Murvai ◽  
Lajos Kalmar ◽  
Bianka Szalaine Agoston ◽  
Beata Szabo ◽  
Agnes Tantos ◽  
...  

Details of the functional mechanisms of intrinsically disordered proteins (IDPs) in living cells is an area not frequently investigated. Here, we dissect the molecular mechanism of action of an IDP in cells by detailed structural analyses based on an in-cell nuclear magnetic resonance experiment. We show that the ID stress protein (IDSP) A. thaliana Early Response to Dehydration (ERD14) is capable of protecting E. coli cells under heat stress. The overexpression of ERD14 increases the viability of E. coli cells from 38.9% to 73.9% following heat stress (50 °C × 15 min). We also provide evidence that the protection is mainly achieved by protecting the proteome of the cells. In-cell NMR experiments performed in E. coli cells show that the protective activity is associated with a largely disordered structural state with conserved, short sequence motifs (K- and H-segments), which transiently sample helical conformations in vitro and engage in partner binding in vivo. Other regions of the protein, such as its S segment and its regions linking and flanking the binding motifs, remain unbound and disordered in the cell. Our data suggest that the cellular function of ERD14 is compatible with its residual structural disorder in vivo.


2010 ◽  
Vol 19 (8) ◽  
pp. 1555-1564 ◽  
Author(s):  
Magnus Kjaergaard ◽  
Ann-Beth Nørholm ◽  
Ruth Hendus-Altenburger ◽  
Stine F. Pedersen ◽  
Flemming M. Poulsen ◽  
...  

2021 ◽  
Author(s):  
Juan Manuel Valverde ◽  
Geronimo Dubra ◽  
Henk van den Toorn ◽  
Guido van Mierlo ◽  
Michiel Vermeulen ◽  
...  

Switch-like cyclin-dependent kinase (CDK)-1 activation is thought to underlie the abruptness of mitotic onset, but how CDKs can simultaneously phosphorylate many diverse substrates is unknown, and direct evidence for such phosphorylation dynamics in vivo is lacking. Here, we analysed protein phosphorylation states in single Xenopus embryos throughout synchronous cell cycles. Over a thousand phosphosites were dynamic in vivo, and assignment of cell cycle phases using egg extracts revealed hundreds of S-phase phosphorylations. Targeted phosphoproteomics in single embryos showed switch-like mitotic phosphorylation of diverse protein complexes. The majority of cell cycle-regulated phosphosites occurred in CDK consensus motifs, and 72% located to intrinsically disordered regions. Dynamically phosphorylated proteins, and documented substrates of cell cycle kinases, are significantly more disordered than phosphoproteins in general. Furthermore, 30-50% are components of membraneless organelles. Our results suggest that phosphorylation of intrinsically disordered proteins by cell cycle kinases, particularly CDKs, allows switch-like mitotic cellular reorganisation.


2019 ◽  
Author(s):  
Antonio Deiana ◽  
Sergio Forcelloni ◽  
Alessandro Porrello ◽  
Andrea Giansanti

AbstractMany studies about classification and the functional annotation of intrinsically disordered proteins (IDPs) are based on either the occurrence of long disordered regions or the fraction of disordered residues in the sequence. Taking into account both criteria we separate the human proteome, taken as a case study, into three variants of proteins: i) ordered proteins (ORDPs), ii) structured proteins with intrinsically disordered regions (IDPRs), and iii) intrinsically disordered proteins (IDPs). The focus of this work is on the different functional roles of IDPs and IDPRs, which up until now have been generally considered as a whole. Previous studies assigned a large set of functional roles to the general category of IDPs. We show here that IDPs and IDPRs have non-overlapping functional spectra, play different roles in human diseases, and deserve to be treated as distinct categories of proteins. IDPs enrich only a few classes, functions, and processes: nucleic acid binding proteins, chromatin binding proteins, transcription factors, and developmental processes. In contrast, IDPRs are spread over several functional protein classes and GO annotations which they partly share with ORDPs. As regards to diseases, we observe that IDPs enrich only cancer-related proteins, at variance with previous results reporting that IDPs are widespread also in cardiovascular and neurodegenerative pathologies. Overall, the operational separation of IDPRs from IDPs is relevant towards correct estimates of the occurrence of intrinsically disordered proteins in genome-wide studies and in the understanding of the functional spectra associated to different flavors of protein disorder.


Sign in / Sign up

Export Citation Format

Share Document