Low-dimensional heterostructures for advanced electrocatalysis: an experimental and computational perspective

2022 ◽  
Author(s):  
Md Ariful Ahsan ◽  
Tianwei He ◽  
Juan C. Noveron ◽  
Karsten Reuter ◽  
Alain R. Puente-Santiago ◽  
...  

The development of LD heterostructure nanomaterials represents a powerful strategy totailor the electrocatalytic function of several interfacial active sites at the subnanometer level.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Si Zhou ◽  
Wei Pei ◽  
Yanyan Zhao ◽  
Xiaowei Yang ◽  
Nanshu Liu ◽  
...  

AbstractActivation of p-block elements to replace the rare and precious transition metals for renewable energy applications is highly desirable. In this review, we go over recent experimental and theoretical progress on the low-dimensional non-metal materials for clean energy production, including carbon, silicon, oxide, boron, and phosphorus-based nanostructures, with the p-block elements serving as active sites. We aim to elucidate the mechanism for triggering activity in different kinds of non-metal systems, and extract general principles for controlling the p-orbital-mediated reactivity from a theoretical point of view. The perspectives and challenges for developing high-efficiency non-metal catalysts are provided in the end.


2020 ◽  
Vol 10 (11) ◽  
pp. 3572-3585 ◽  
Author(s):  
José María Moreno ◽  
Alexandra Velty ◽  
Urbano Díaz

Low-dimensional MOF-type catalysts containing Brønsted acid and redox active sites, based on assembled 1D organic–inorganic nanoribbons, for one-pot two-step reactions.


Author(s):  
Alexis T. Bell

Heterogeneous catalysts, used in industry for the production of fuels and chemicals, are microporous solids characterized by a high internal surface area. The catalyticly active sites may occur at the surface of the bulk solid or of small crystallites deposited on a porous support. An example of the former case would be a zeolite, and of the latter, a supported metal catalyst. Since the activity and selectivity of a catalyst are known to be a function of surface composition and structure, it is highly desirable to characterize catalyst surfaces with atomic scale resolution. Where the active phase is dispersed on a support, it is also important to know the dispersion of the deposited phase, as well as its structural and compositional uniformity, the latter characteristics being particularly important in the case of multicomponent catalysts. Knowledge of the pore size and shape is also important, since these can influence the transport of reactants and products through a catalyst and the dynamics of catalyst deactivation.


Author(s):  
C. Jacobsen ◽  
J. Fu ◽  
S. Mayer ◽  
Y. Wang ◽  
S. Williams

In scanning luminescence x-ray microscopy (SLXM), a high resolution x-ray probe is used to excite visible light emission (see Figs. 1 and 2). The technique has been developed with a goal of localizing dye-tagged biochemically active sites and structures at 50 nm resolution in thick, hydrated biological specimens. Following our initial efforts, Moronne et al. have begun to develop probes based on biotinylated terbium; we report here our progress towards using microspheres for tagging.Our initial experiments with microspheres were based on commercially-available carboxyl latex spheres which emitted ~ 5 visible light photons per x-ray absorbed, and which showed good resistance to bleaching under x-ray irradiation. Other work (such as that by Guo et al.) has shown that such spheres can be used for a variety of specific labelling applications. Our first efforts have been aimed at labelling ƒ actin in Chinese hamster ovarian (CHO) cells. By using a detergent/fixative protocol to load spheres into cells with permeabilized membranes and preserved morphology, we have succeeded in using commercial dye-loaded, spreptavidin-coated 0.03μm polystyrene spheres linked to biotin phalloidon to label f actin (see Fig. 3).


2019 ◽  
Vol 9 (3) ◽  
pp. 811-821 ◽  
Author(s):  
Zhao-Meng Wang ◽  
Li-Juan Liu ◽  
Bo Xiang ◽  
Yue Wang ◽  
Ya-Jing Lyu ◽  
...  

The catalytic activity decreases as –(SiO)3Mo(OH)(O) > –(SiO)2Mo(O)2 > –(O)4–MoO.


2020 ◽  
Vol 10 (18) ◽  
pp. 6266-6273
Author(s):  
Yalan Zhang ◽  
Zebin Yu ◽  
Ronghua Jiang ◽  
Jung Huang ◽  
Yanping Hou ◽  
...  

Excellent electrochemical water splitting with remarkable durability can provide a solution to satisfy the increasing global energy demand in which the electrode materials play an important role.


Sign in / Sign up

Export Citation Format

Share Document