A bright future for engineering piezoelectric 2D crystals

2022 ◽  
Author(s):  
Peter C. Sherrell ◽  
Marco Fronzi ◽  
Nick A. Shepelin ◽  
Alexander Corletto ◽  
David A. Winkler ◽  
...  
Keyword(s):  

We explore piezoelectricity in 2D crystals, envisioning assessment, prediction, and engineering 2D piezoelectricity via chemical, computational, and physical approaches.

Author(s):  
Jeffry A. Reidler ◽  
John P. Robinson

We have prepared two-dimensional (2D) crystals of tetanus toxin using procedures developed by Uzgiris and Kornberg for the directed production of 2D crystals of monoclonal antibodies at an antigen-phospholipid monolayer interface. The tetanus toxin crystals were formed using a small mole fraction of the natural receptor, GT1, incorporated into phosphatidyl choline monolayers. The crystals formed at low concentration overnight. Two dimensional crystals of this type are particularly useful for structure determination using electron microscopy and computer image refinement. Three dimensional (3D) structural information can be derived from these crystals by computer reconstruction of photographs of toxin crystals taken at different tilt angles. Such 3D reconstructions may help elucidate the mechanism of entry of the enzymatic subunit of toxins into cells, particularly since these crystals form directly on a membrane interface at similar concentrations of ganglioside GT1 to the natural cellular receptors.


Author(s):  
Xiao-Wei Guo

Voltage-dependent, anion-selective channels (VDAC) are formed in the mitochondrial outer membrane (mitOM) by a 30-kDa polypeptide. These channels form ordered 2D arrays when mitOMs from Neurospora crassa are treated with soluble phospholipase A2. We obtain low-dose electron microscopic images of unstained specimens of VDAC crystals preserved in vitreous ice, using a Philips EM420 equipped with a Gatan cryo-transfer stage. We then use correlation analysis to compute average projections of the channel crystals. The procedure involves Fourier-filtration of a region within a crystal field to obtain a preliminary average that is subsequently cross-correlated with the entire crystal. Subregions are windowed from the crystal image at coordinates of peaks in the cross-correlation function (CCF, see Figures 1 and 2) and summed to form averages (Figure 3).The VDAC channel forms several different types of crystalline arrays in mitOMs. The polymorph first observed during phospholipase treatment is a parallelogram array (a=13 run, b=11.5 run, θ==109°) containing 6 water-filled pores per unit cell. Figure 1 shows the CCF of a sub-field of such an “oblique” array used to compute the correlation average of Figure 3A. With increased phospholipase treatment, other polymorphs are observed, often co-existing within the same crystal. For example, two distinct (but closely related) types of lattices occur in the field corresponding to the CCF of Figure 2: a “contracted” version of the parallelogram lattice (a=13 run, b=10 run, θ=99°), and a near-rectangular lattice (a=8.5 run, b=5 nm). The pattern of maxima in this CCF suggests that a third, near-hexagonal lattice (a=4.5 nm) may also be present. The correlation averages of Figures 3B-D were computed from polycrystalline fields, using peak coordinates in regions of CCFs corresponding to each of the three lattice types.


Author(s):  
Werner Kühlbrandt ◽  
Da Neng Wang ◽  
K.H. Downing

The light-harvesting chlorophyll-a/b protein complex (LHC-II) is the most abundant membrane protein in the chloroplasts of green plants where it functions as a molecular antenna of solar energy for photosynthesis. We have grown two-dimensional (2d) crystals of the purified, detergent-solubilized LHC-II . The crystals which measured 5 to 10 μm in diameter were stabilized for electron microscopy by washing with a 0.5% solution of tannin. Electron diffraction patterns of untilted 2d crystals cooled to 130 K showed sharp spots to 3.1 Å resolution. Spot-scan images of 2d crystals were recorded at 160 K with the Berkeley microscope . Images of untilted crystals were processed, using the unbending procedure by Henderson et al . A projection map of the complex at 3.7Å resolution was generated from electron diffraction amplitudes and high-resolution phases obtained by image processing .A difference Fourier analysis with the same image phases and electron diffraction amplitudes recorded of frozen, hydrated specimens showed no significant differences in the 3.7Å projection map. Our tannin treatment therefore does not affect the structural integrity of the complex.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
C Bicchi ◽  
C Cagliero ◽  
C Cordero ◽  
E Liberto ◽  
B Sgorbini ◽  
...  

1958 ◽  
Vol 14 (4) ◽  
pp. 47-51
Author(s):  
Martin A. Elliott ◽  
Marvin Chandler
Keyword(s):  

1962 ◽  
Vol 18 (1) ◽  
pp. 9-14
Author(s):  
G. Howard Conklin
Keyword(s):  

ChemPhysChem ◽  
2015 ◽  
Vol 16 (15) ◽  
pp. 3130-3130
Author(s):  
Antonio Bauzá ◽  
Tiddo J. Mooibroek ◽  
Antonio Frontera
Keyword(s):  

Science ◽  
2021 ◽  
Vol 372 (6538) ◽  
pp. 141.6-142
Author(s):  
Phil Szuromi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document