High-Resolution electron crystallography of the light-harvesting chlorophyll-a/b protein complex from chloroplast membranes

Author(s):  
Werner Kühlbrandt ◽  
Da Neng Wang ◽  
K.H. Downing

The light-harvesting chlorophyll-a/b protein complex (LHC-II) is the most abundant membrane protein in the chloroplasts of green plants where it functions as a molecular antenna of solar energy for photosynthesis. We have grown two-dimensional (2d) crystals of the purified, detergent-solubilized LHC-II . The crystals which measured 5 to 10 μm in diameter were stabilized for electron microscopy by washing with a 0.5% solution of tannin. Electron diffraction patterns of untilted 2d crystals cooled to 130 K showed sharp spots to 3.1 Å resolution. Spot-scan images of 2d crystals were recorded at 160 K with the Berkeley microscope . Images of untilted crystals were processed, using the unbending procedure by Henderson et al . A projection map of the complex at 3.7Å resolution was generated from electron diffraction amplitudes and high-resolution phases obtained by image processing .A difference Fourier analysis with the same image phases and electron diffraction amplitudes recorded of frozen, hydrated specimens showed no significant differences in the 3.7Å projection map. Our tannin treatment therefore does not affect the structural integrity of the complex.

1994 ◽  
Vol 49 (5-6) ◽  
pp. 337-342 ◽  
Author(s):  
Grzegorz Jackowski ◽  
Ewa Kluck

Abstract The light-harvesting chlorophyll a/b-protein complex of photosystem II (LHC II) was isolated from carnation (Dianthus caryophyllus L.) leaves by K+-induced aggregation of n-hep-tylthioglucoside-treated photosystem II particles. When solubilized with a mixture of lithium docedyl sulphate, octyl-β-D-glucopyranoside and dodecyl-β-D-maltoside the LHC II was re­ solved by mild sodium dodecyl sulphate-polyacrylamide gel electrophoresis into four oligo­meric forms and a monomeric one. LHC II contained five major polypeptides only two of which (27 and 26 kDa) were found to be its authentic components. The oligomeric forms of LHC II were found to differ in the stoichiometric ratios of the polypeptides present. The 26 kD a polypeptide was enriched in the largest oligomeric forms while the 27 kDa polypep­tide tended to form a monomer or to assemble as lower oligomeric states of LHC II.


Author(s):  
Werner Kühlbrandt

Thin three-dimensional, hexagonal crystals of the light—harvesting chlorophyll a/b—protein complex (LHC II) from pea chloroplast membranes diffract electrons to 3.7 Å resolution when preserved in glucose or tannin. The symmetry of the diffraction pattern (6mm), the dimensions of the unit cell in projection (a = 127 Å) and micrographs of negatively stained specimens suggested that the hexagonal crystals were stacks of two-dimensional crystals of p321 symmetry. Low—dose (1 —2 electrons/Å2) electron micrographs of thin three-dimensional crystals preserved in tannin were recorded in an attempt to determine the structure of this integral membrane protein complex at high resolution, initially in projection. The best images showed sharp diffraction spots at 12 — 14 Å resolution when examined by optical diffraction. Image areas measuring up to 40 x 40 mm2 were densitometered at a step size corresponding to 3 Å or less at the specimen and computer processed to correct for lattice distortions, using programmes by R.Henderson and J.M.Baldwin. Fourier transforms of the distortion—corrected images showed reflections above background level to 6 Å resolution.


1986 ◽  
Vol 103 (3) ◽  
pp. 733-740 ◽  
Author(s):  
S C Darr ◽  
S C Somerville ◽  
C J Arntzen

A collection of 17 monoclonal antibodies elicited against the light-harvesting chlorophyll a/b protein complex which serves photosystem II (LHC-II) of Pisum sativum shows six classes of binding specificity. Antibodies of two of the classes recognize a single polypeptide (the 28- or the 26- kD polypeptides), thereby suggesting that the two proteins are not derived from a common precursor. Other classes of antibodies cross-react with several polypeptides of LHC-II or with polypeptides of both LHC-II and the light-harvesting chlorophyll a/b polypeptides of photosystem I (LHC-I), indicating that there are structural similarities among the polypeptides of LHC-II and LHC-I. The evidence for protein processing by which the 26-, 25.5-, and 24.5-kD polypeptides are derived from a common precursor polypeptide is discussed. Binding studies using antibodies specific for individual LHC-II polypeptides were used to quantify the number of antigenic polypeptides in the thylakoid membrane. 27 copies of the 26-kD polypeptide and two copies of the 28-kD polypeptide were found per 400 chlorophylls. In the chlorina f2 mutant of barley, and in intermittent light-treated barley seedlings, the amount of the 26-kD polypeptide in the thylakoid membranes was greatly reduced, while the amount of 28-kD polypeptide was apparently not affected. We propose that stable insertion and assembly of the 28-kD polypeptide, unlike the 26-kD polypeptide, is not regulated by the presence of chlorophyll b.


Author(s):  
Jan-Olov Bovin ◽  
Osamu Terasaki ◽  
Jan-Olle Malm ◽  
Sven Lidin ◽  
Sten Andersson

High resolution transmission electron microscopy (HRTEM) is playing an important role in identifying the new icosahedral phases. The selected area diffraction patterns of quasi crystals, recorded with an aperture of the radius of many thousands of Ångströms, consist of dense arrays of well defined sharp spots with five fold dilatation symmetry which makes the interpretation of the diffraction process and the resulting images different from those invoked for usual crystals. The atomic structure of the quasi crystals is not established even if several models are proposed. The correct structure model must of course explain the electron diffraction patterns with 5-, 3- and 2-fold symmetry for the phases but it is also important that the HRTEM images of the alloys match the computer simulated images from the model. We have studied quasi crystals of the alloy Al65Cu20Fe15. The electron microscopes used to obtain high resolution electro micrographs and electron diffraction patterns (EDP) were a (S)TEM JEM-2000FX equipped with EDS and PEELS showing a structural resolution of 2.7 Å and a IVEM JEM-4000EX with a UHP40 high resolution pole piece operated at 400 kV and with a structural resolution of 1.6 Å. This microscope is used with a Gatan 622 TV system with an image intensifier, coupled to a YAG screen. It was found that the crystals of the quasi crystalline materials here investigated were more sensitive to beam damage using 400 kV as electron accelerating voltage than when using 200 kV. Low dose techniques were therefore applied to avoid damage of the structure.


Sign in / Sign up

Export Citation Format

Share Document