outer membrane channel
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 7)

H-INDEX

29
(FIVE YEARS 3)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Uday Tak ◽  
Terje Dokland ◽  
Michael Niederweis

AbstractMycobacterium tuberculosis secretes the tuberculosis necrotizing toxin (TNT) to kill host cells. Here, we show that the WXG100 proteins EsxE and EsxF are essential for TNT secretion. EsxE and EsxF form a water-soluble heterodimer (EsxEF) that assembles into oligomers and long filaments, binds to membranes, and forms stable membrane-spanning channels. Electron microscopy of EsxEF reveals mainly pentameric structures with a central pore. Mutations of both WXG motifs and of a GXW motif do not affect dimerization, but abolish pore formation, membrane deformation and TNT secretion. The WXG/GXW mutants are locked in conformations with altered thermostability and solvent exposure, indicating that the WXG/GXW motifs are molecular switches controlling membrane interaction and pore formation. EsxF is accessible on the bacterial cell surface, suggesting that EsxEF form an outer membrane channel for toxin export. Thus, our study reveals a protein secretion mechanism in bacteria that relies on pore formation by small WXG proteins.


2020 ◽  
Vol 2 (7A) ◽  
Author(s):  
Ilyas Alav ◽  
Ricardo Torres ◽  
Vassiliy Bavro ◽  
Jessica Blair

The resistance-nodulation-division (RND) family of efflux pumps confer clinically relevant antibiotic resistance in Gram-negative bacteria, such as Salmonella enterica. RND pumps, including AcrB, are organized as tri-partite systems, consisting of an inner membrane RND pump, a periplasmic adaptor protein (PAP) and an outer membrane channel. Previously, inactivation of the PAPs AcrA and AcrE in S. enterica has been shown to significantly increase susceptibility to antimicrobials and reduce virulence. Therefore, PAPs are seen as attractive targets for the development of efflux pump inhibitors. However, the role of PAPs in the assembly of tri-partite pumps and the residues involved in PAP-RND pump binding is poorly understood. In this study, point mutations in the predicted RND binding residues of AcrA were generated by site-directed mutagenesis. The point mutants were characterised phenotypically through ethidium bromide efflux assays and antimicrobial susceptibility testing. Furthermore, Western blotting was used to verify that the phenotypic effect of the point mutations was not due to destabilisation of the AcrA protein. Point mutations in certain residues, such as G58, F292, R294 and G363 were found to significantly impair efflux activity and increase susceptibility to various antibiotics and dyes, suggesting an important role for these AcrA residues in RND pump binding. Western blotting confirmed that these point mutants were stable and exhibited similar expression levels to the wild-type. These residues could be important targets for the design and development of PAP inhibitors to restore the activity of existing antibiotics and reduce virulence of Salmonella.


Structure ◽  
2019 ◽  
Vol 27 (12) ◽  
pp. 1855-1861.e3 ◽  
Author(s):  
Justin F. Acheson ◽  
Zygmunt S. Derewenda ◽  
Jochen Zimmer

2019 ◽  
Vol 98 (5) ◽  
pp. 2281-2289 ◽  
Author(s):  
R. Raspoet ◽  
V. Eeckhaut ◽  
K. Vermeulen ◽  
L. De Smet ◽  
Y. Wen ◽  
...  

2019 ◽  
Vol 55 (38) ◽  
pp. 5431-5434 ◽  
Author(s):  
Deepak Anand ◽  
Gaurao V. Dhoke ◽  
Julia Gehrmann ◽  
Tayebeh M. Garakani ◽  
Mehdi D. Davari ◽  
...  

Development of a novel whole cell system for chiral separation of arginine enantiomers through an engineered outer membrane channel protein ferric hydroxamate uptake protein A (FhuA).


2018 ◽  
Vol 63 (2) ◽  
pp. e01718-18 ◽  
Author(s):  
Srijan Ranjitkar ◽  
Adriana K. Jones ◽  
Mina Mostafavi ◽  
Zachary Zwirko ◽  
Oleg Iartchouk ◽  
...  

ABSTRACT Efflux pumps contribute to antibiotic resistance in Gram-negative pathogens. Correspondingly, efflux pump inhibitors (EPIs) may reverse this resistance. D13-9001 specifically inhibits MexAB-OprM in Pseudomonas aeruginosa. Mutants with decreased susceptibility to MexAB-OprM inhibition by D13-9001 were identified, and these fell into two categories: those with alterations in the target MexB (F628L and ΔV177) and those with an alteration in a putative sensor kinase of unknown function, PA1438 (L172P). The alterations in MexB were consistent with reported structural studies of the D13-9001 interaction with MexB. The PA1438L172P alteration mediated a >150-fold upregulation of MexMN pump gene expression and a >50-fold upregulation of PA1438 and the neighboring response regulator gene, PA1437. We propose that these be renamed mmnR and mmnS for MexMN regulator and MexMN sensor, respectively. MexMN was shown to partner with the outer membrane channel protein OprM and to pump several β-lactams, monobactams, and tazobactam. Upregulated MexMN functionally replaced MexAB-OprM to efflux these compounds but was insusceptible to inhibition by D13-9001. MmnSL172P also mediated a decrease in susceptibility to imipenem and biapenem that was independent of MexMN-OprM. Expression of oprD, encoding the uptake channel for these compounds, was downregulated, suggesting that this channel is also part of the MmnSR regulon. Transcriptome sequencing (RNA-seq) of cells encoding MmnSL172P revealed, among other things, an interrelationship between the regulation of mexMN and genes involved in heavy metal resistance.


2018 ◽  
Author(s):  
Jiajun Wang ◽  
Jayesh Arun Bafna ◽  
Satya Prathyusha Bhamidimarri ◽  
Mathias Winterhalter

Biological channels facilitate the exchange of small molecules across membranes, but surprisingly there is a lack of general tools for the identification and quantification of transport (i.e., translocation and binding). Analyzing the ion current fluctuation of a typical channel with its constriction region in the middle does not allow a direct conclusion on successful transport. For this, we created an additional barrier acting as a molecular counter at the exit of the channel. To identify permeation, we mainly read the molecule residence time in the channel lumen as the indicator whether the molecule reached the exit of the channel. As an example, here we use the well-studied porin, OmpF, an outer membrane channel from <i>E. coli</i>. Inspection of the channel structure suggests that aspartic acid at position 181 is located below the constriction region (CR) and we subsequently mutated this residue to cysteine, where else cysteine free and functionalized it by covalent binding with 2-sulfonatoethyl methanethiosulfonate (MTSES) or the larger glutathione (GLT) blockers. Using the dwell time as the signal for transport, we found that both mono-arginine and tri-arginine permeation process is prolonged by 20% and 50% respectively through OmpF<sub>E181C</sub>MTSES, while the larger sized blocker modification OmpF<sub>E181C</sub>GLT drastically decreased the permeation of mono-arginine by 9-fold and even blocked the pathway of the tri-arginine. In case of the hepta-arginine as substrate, both chemical modifications led to an identical ‘blocked’ pattern observed by the dwell time of ion current fluctuation of the OmpF<sub>wt</sub>. As an instance for antibiotic permeation, we analyzed norfloxacin, a fluoroquinolone antimicrobial agent. The modulation of the interaction dwell time suggests possible successful permeation of norfloxacin across OmpF<sub>wt</sub>. This approach may discriminate blockages from translocation events for a wide range of substrates. A potential application could be screening for scaffolds to improve the permeability of antibiotics.


2018 ◽  
Author(s):  
Jiajun Wang ◽  
Jayesh Arun Bafna ◽  
Satya Prathyusha Bhamidimarri ◽  
Mathias Winterhalter

Biological channels facilitate the exchange of small molecules across membranes, but surprisingly there is a lack of general tools for the identification and quantification of transport (i.e., translocation and binding). Analyzing the ion current fluctuation of a typical channel with its constriction region in the middle does not allow a direct conclusion on successful transport. For this, we created an additional barrier acting as a molecular counter at the exit of the channel. To identify permeation, we mainly read the molecule residence time in the channel lumen as the indicator whether the molecule reached the exit of the channel. As an example, here we use the well-studied porin, OmpF, an outer membrane channel from <i>E. coli</i>. Inspection of the channel structure suggests that aspartic acid at position 181 is located below the constriction region (CR) and we subsequently mutated this residue to cysteine, where else cysteine free and functionalized it by covalent binding with 2-sulfonatoethyl methanethiosulfonate (MTSES) or the larger glutathione (GLT) blockers. Using the dwell time as the signal for transport, we found that both mono-arginine and tri-arginine permeation process is prolonged by 20% and 50% respectively through OmpF<sub>E181C</sub>MTSES, while the larger sized blocker modification OmpF<sub>E181C</sub>GLT drastically decreased the permeation of mono-arginine by 9-fold and even blocked the pathway of the tri-arginine. In case of the hepta-arginine as substrate, both chemical modifications led to an identical ‘blocked’ pattern observed by the dwell time of ion current fluctuation of the OmpF<sub>wt</sub>. As an instance for antibiotic permeation, we analyzed norfloxacin, a fluoroquinolone antimicrobial agent. The modulation of the interaction dwell time suggests possible successful permeation of norfloxacin across OmpF<sub>wt</sub>. This approach may discriminate blockages from translocation events for a wide range of substrates. A potential application could be screening for scaffolds to improve the permeability of antibiotics.


Sign in / Sign up

Export Citation Format

Share Document