lhc ii
Recently Published Documents


TOTAL DOCUMENTS

152
(FIVE YEARS 3)

H-INDEX

31
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Ravindra S Kale ◽  
Jacob Seep ◽  
Larry Sallans ◽  
Laurie K Frankel ◽  
Terry M. Bricker

Under aerobic conditions the production of Reactive Oxygen Species (ROS) by electron transport chains is unavoidable, and occurs in both autotrophic and heterotrophic organisms. In photosynthetic organisms both Photosystem II (PS II) and Photosystem I (PS I), in addition to the cytochrome b6/f complex, are demonstrated sources of ROS. All of these membrane protein complexes exhibit oxidative damage when isolated from field-grown plant material. An additional possible source of ROS in PS I and PS II is the distal, chlorophyll-containing light-harvesting array LHC II, which is present in both photosystems. These serve as possible sources of 1O2 produced by the interaction of 3O2 with 3chl* produced by intersystem crossing. We have hypothesized that amino acid residues close to the sites of ROS generation will be more susceptible to oxidative modification than distant residues. In this study, we have identified oxidized amino acid residues in a subset of the spinach LHC II proteins (Lhcb1 and Lhcb2) that were associated with either PS II membranes (i.e. BBYs) or PS I-LHC I-LHC II membranes, both of which were isolated from field-grown spinach. We identified oxidatively modified residues by high-resolution tandem mass spectrometry. Interestingly, two different patterns of oxidative modification were evident for the Lhcb1 and Lhcb2 proteins from these different sources. In the LHC II associated with PS II membranes, oxidized residues were identified to be located on the stromal surface of Lhcb1 and, to a much lesser extent, Lhcb2. Relatively few oxidized residues were identified as buried in the hydrophobic core of these proteins. The LHC II associated with PS I-LHC I-LHC II membranes, however, exhibited fewer surface-oxidized residues but, rather a large number of oxidative modifications buried in the hydrophobic core regions of both Lhcb1 and Lhcb2, adjacent to the chlorophyll prosthetic groups. These results appear to indicate that ROS, specifically 1O2, can modify the Lhcb proteins associated with both photosystems and that the LHC II associated with PS II membranes represent a different population from the LHC II associated with PS I-LHC I-LHC II membranes.


Author(s):  
Hu Zhang ◽  
Liang Zhao ◽  
Yi Chen ◽  
Mianmian Zhu ◽  
Quan Xu ◽  
...  

Microalgal heterotrophic cultivation is an emerging technology that can enable producing high cell-density algal cell cultures, which can be coupled with photoautotrophic cultivation for valuable chemicals such as lipids manufacturing. However, how the heterotrophically grown algal cells respond to the lipid-inducing conditions has not been fully elucidated so far. In this study, when the heterotrophically grown Scenedesmus acuminatus cells were subjected to the high light (HL) and nitrogen-limited (NL) conditions, both the biomass and lipid productivity were enhanced as compared to that of the photoautotrophically grown counterparts. The chlorophyll a fluorometry analysis showed that the Fv/Fm and Y(II) of the heterotrophically grown cells subjected to the HL and NL conditions was recovered to the maximum value of 0.75 and 0.43, respectively, much higher than those of the photoautotrophically grown cells under the same stress conditions. Transcriptomic analysis revealed that heterotrophically grown cells fully expressed the genes coding for the photosystems proteins, including the key photoprotective proteins D1, PsbS, light-harvesting-complex (LHC) I and LHC II. Meanwhile, downregulation of the carotenoid biosynthesis and upregulation of the glycolysis/gluconeogenesis, tricarboxylic acid (TCA) cycle and oxidative phosphorylation pathways were observed when the heterotrophically grown cells were subjected to the HL and N-limited conditions for lipid production. It was deduced that regulation of these pathways not only enhanced the light utilization but also provided the reducing power and ATP by which the biomass accumulation was significantly elevated. Besides, upregulation of the acetyl-CoA carboxylase/biotin carboxylase, digalactosyl diacylglycerol synthase and diacylglycerol acyltransferase 2 encoding genes may be attributable to the enhanced lipid production. Understanding the cellular responses during the trophic transition process could guide improvement of the strength of trophic transition enhancing microalgal biomass and lipid production.


2020 ◽  
Vol 71 (12) ◽  
pp. 3626-3637 ◽  
Author(s):  
Francesco Saccon ◽  
Vasco Giovagnetti ◽  
Mahendra K Shukla ◽  
Alexander V Ruban

Abstract Plants are subject to dramatic fluctuations in the intensity of sunlight throughout the day. When the photosynthetic machinery is exposed to high light, photons are absorbed in excess, potentially leading to oxidative damage of its delicate membrane components. A photoprotective molecular process called non-photochemical quenching (NPQ) is the fastest response carried out in the thylakoid membranes to harmlessly dissipate excess light energy. Despite having been intensely studied, the site and mechanism of this essential regulatory process are still debated. Here, we show that the main NPQ component called energy-dependent quenching (qE) is present in plants with photosynthetic membranes largely enriched in the major trimeric light-harvesting complex (LHC) II, while being deprived of all minor LHCs and most photosystem core proteins. This fast and reversible quenching depends upon thylakoid lumen acidification (ΔpH). Enhancing ΔpH amplifies the extent of the quenching and restores qE in the membranes lacking PSII subunit S protein (PsbS), whereas the carotenoid zeaxanthin modulates the kinetics and amplitude of the quenching. These findings highlight the self-regulatory properties of the photosynthetic light-harvesting membranes in vivo, where the ability to switch reversibly between the harvesting and dissipative states is an intrinsic property of the major LHCII.


Author(s):  
Lewis A. Baker ◽  
Scott Habershon

Photosynthetic pigment-protein complexes (PPCs) are a vital component of the light-harvesting machinery of all plants and photosynthesizing bacteria, enabling efficient transport of the energy of absorbed light towards the reaction centre, where chemical energy storage is initiated. PPCs comprise a set of chromophore molecules, typically bacteriochlorophyll species, held in a well-defined arrangement by a protein scaffold; this relatively rigid distribution leads to a viewpoint in which the chromophore subsystem is treated as a network, where chromophores represent vertices and inter-chromophore electronic couplings represent edges. This graph-based view can then be used as a framework within which to interrogate the role of structural and electronic organization in PPCs. Here, we use this network-based viewpoint to compare excitation energy transfer (EET) dynamics in the light-harvesting complex II (LHC-II) system commonly found in higher plants and the Fenna-Matthews-Olson (FMO) complex found in green sulfur bacteria. The results of our simple network-based investigations clearly demonstrate the role of network connectivity and multiple EET pathways on the efficient and robust EET dynamics in these PPCs, and highlight a role for such considerations in the development of new artificial light-harvesting systems.


2016 ◽  
Vol 2016 (6) ◽  
Author(s):  
Tianjun Li ◽  
James A. Maxin ◽  
Van E. Mayes ◽  
Dimitri V. Nanopoulos
Keyword(s):  

2014 ◽  
Vol 43 (8) ◽  
pp. 832001
Author(s):  
贺俊芳 HE Jun-fang ◽  
朱长军 ZHU Chang-jun ◽  
赵小侠 ZHAO Xiao-xia ◽  
李院院 LI Yuan-yuan

Sign in / Sign up

Export Citation Format

Share Document