Diruthenium aryl compounds – tuning of electrochemical responses and solubility

2022 ◽  
Author(s):  
Lyndsy A. Miller-Clark ◽  
Peter E. Christ ◽  
Tong Ren

The variation of the substituents (X = 3,5-(OMe)2; 3-iPrO) on the bridging ligand results in improved solubility of Ru2-aryl compounds, while the aryl substitution significantly influences the potentials of the Ru2-based redox couples.

2008 ◽  
Vol 2 (2) ◽  
pp. 122-139
Author(s):  
Takashi Komiyama ◽  
Satoshi Igarashi ◽  
Yasuhiko Yukawa

2021 ◽  
Vol 60 (3) ◽  
pp. 1806-1813
Author(s):  
Husain N. Kagalwala ◽  
Mahesh S. Deshmukh ◽  
Elamparuthi Ramasamy ◽  
Neelima Nair ◽  
Rongwei Zhou ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yiping Zou ◽  
Tingting Liu ◽  
Qijun Du ◽  
Yingying Li ◽  
Haibo Yi ◽  
...  

AbstractElectrochemically reversible redox couples that embrace more electron transfer at a higher potential are the eternal target for energy storage batteries. Here, we report a four-electron aqueous zinc-iodine battery by activating the highly reversible I2/I+ couple (1.83 V vs. Zn/Zn2+) in addition to the typical I−/I2 couple (1.29 V). This is achieved by intensive solvation of the aqueous electrolyte to yield ICl inter-halogens and to suspend its hydrolysis. Experimental characterization and modelling reveal that limited water activity and sufficient free chloride ions in the electrolyte are crucial for the four-electron process. The merits of the electrolyte also afford to stabilize Zn anode, leading to a reliable Zn-I2 aqueous battery of 6000 cycles. Owing to high operational voltage and capacity, energy density up to 750 Wh kg−1 based on iodine mass was achieved (15–20 wt% iodine in electrode). It pushes the Zn-I2 battery to a superior level among these available aqueous batteries.


2021 ◽  
Author(s):  
M. Hegemann ◽  
P. P. Bawol ◽  
A. Köllisch-Mirbach ◽  
H. Baltruschat

AbstractIn order to advance the development of metal-air batteries and solve possible problems, it is necessary to gain a fundamental understanding of the underlying reaction mechanisms. In this study we investigate the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER, from species formed during ORR) in Na+ containing dimethyl sulfoxide (DMSO) on poly and single crystalline Pt and Au electrodes. Using a rotating ring disk electrode (RRDE) generator collector setup and additional differential electrochemical mass spectrometry (DEMS), we investigate the ORR mechanism and product distribution. We found that the formation of adsorbed Na2O2, which inhibits further oxygen reduction, is kinetically favored on Pt overadsorption on Au. Peroxide formation occurs to a smaller extent on the single crystal electrodes of Pt than on the polycrystalline surface. Utilizing two different approaches, we were able to calculate the heterogeneous rate constants of the O2/O2− redox couple on Pt and Au and found a higher rate for Pt electrodes compared to Au. We will show that on both electrodes the first electron transfer (formation of superoxide) is the rate-determining step in the reaction mechanism. Small amounts of added Li+ in the electrolyte reduce the reversibility of the O2/O2− redox couples due to faster and more efficient blocking of the electrode by peroxide. Another effect is the positive potential shift of the peroxide formation on both electrodes. The reaction rate of the peroxide formation on the Au electrode increases when increasing the Li+ content in the electrolyte, whereas it remains unaffected on the Pt electrode. However, we can show that the mixed electrolytes promote the activity of peroxide oxidation on the Pt electrode compared to a pure Li+ electrolyte. Overall, we found that the addition of Li+ leads to a Li+-dominated mechanism (ORR onset and product distribution) as soon as the Li+ concentration exceeds the oxygen concentration. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document