scholarly journals Mixed Lithium and Sodium Ion Aprotic DMSO Electrolytes for Oxygen Reduction on Au and Pt Studied by DEMS and RRDE

2021 ◽  
Author(s):  
M. Hegemann ◽  
P. P. Bawol ◽  
A. Köllisch-Mirbach ◽  
H. Baltruschat

AbstractIn order to advance the development of metal-air batteries and solve possible problems, it is necessary to gain a fundamental understanding of the underlying reaction mechanisms. In this study we investigate the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER, from species formed during ORR) in Na+ containing dimethyl sulfoxide (DMSO) on poly and single crystalline Pt and Au electrodes. Using a rotating ring disk electrode (RRDE) generator collector setup and additional differential electrochemical mass spectrometry (DEMS), we investigate the ORR mechanism and product distribution. We found that the formation of adsorbed Na2O2, which inhibits further oxygen reduction, is kinetically favored on Pt overadsorption on Au. Peroxide formation occurs to a smaller extent on the single crystal electrodes of Pt than on the polycrystalline surface. Utilizing two different approaches, we were able to calculate the heterogeneous rate constants of the O2/O2− redox couple on Pt and Au and found a higher rate for Pt electrodes compared to Au. We will show that on both electrodes the first electron transfer (formation of superoxide) is the rate-determining step in the reaction mechanism. Small amounts of added Li+ in the electrolyte reduce the reversibility of the O2/O2− redox couples due to faster and more efficient blocking of the electrode by peroxide. Another effect is the positive potential shift of the peroxide formation on both electrodes. The reaction rate of the peroxide formation on the Au electrode increases when increasing the Li+ content in the electrolyte, whereas it remains unaffected on the Pt electrode. However, we can show that the mixed electrolytes promote the activity of peroxide oxidation on the Pt electrode compared to a pure Li+ electrolyte. Overall, we found that the addition of Li+ leads to a Li+-dominated mechanism (ORR onset and product distribution) as soon as the Li+ concentration exceeds the oxygen concentration. Graphical abstract

2018 ◽  
Vol 86 (13) ◽  
pp. 447-452
Author(s):  
Hiroto Tsurumaki ◽  
Tomohiro Mochizuki ◽  
Hiroki Tei ◽  
Naoto Todoroki ◽  
Toshimasa Wadayama

2008 ◽  
Vol 73 (6) ◽  
pp. 641-654 ◽  
Author(s):  
Nevenka Elezovic ◽  
Biljana Babic ◽  
Nedeljko Krstajic ◽  
Snezana Gojkovic ◽  
Ljiljana Vracar

The temperature dependence of oxygen reduction reaction (ORR) was studied on highly dispersed Pt nanoparticles supported on a carbon cryo-gel. The specific surface area of the support was 517 m2 g-1, the Pt particles diameter was about 2.7 nm and the loading of the catalyst was 20 wt.%. The kinetics of the ORR at the Pt/C electrode was examined in 0.50 mol dm-3 HClO4 solution in the temperature range from 274 to 318 K. At all temperatures, two distinct E-log j regions were observed; at low current densities with a slope of -2.3RT/F and at high current densities with a slope of -2.3?2RT/F. In order to confirm the mechanism of oxygen reduction previously suggested at a polycrystalline Pt and a Pt/Ebonex nanostructured electrode, the apparent enthalpies of activation at selected potentials vs. the reversible hydrogen electrode were calculated in both current density regions. Although ?H ?a,1 > ?H ?a,h , it was a,1 a, h found that the enthalpies of activation at the zero Galvani potential difference were the same and hence it could be concluded that the rate-determining step of the ORR was the same in both current density regions. The synthesized Pt/C catalyst showed a small enhancement in the catalytic activity for ORR in comparison to the polycrystalline Pt, but no change in the mechanism of the reaction.


2007 ◽  
Vol 72 (7) ◽  
pp. 699-708 ◽  
Author(s):  
N.R. Elezovic ◽  
B.M. Babic ◽  
LJ.M. Vracar ◽  
N.V. Krstajic

The oxygen reduction reaction was investigated in 0.1 M NaOH solution, on a porous coated electrode formed of Pt particles supported on carbon cryogel. The Pt/C catalyst was characterized by the X-ray diffraction (XRD), transmission electron microscopy (TEM) and cyclic voltammetry techniques. The results demonstrated a successful reduction of Pt to metallic form and homogenous Pt particle size distribution with a mean particle size of about 2.7 nm. The ORR kinetics was investigated by linear sweep polarization at a rotating disc electrode. The results showed the existence of two E - log j regions, usually referred to polycrystalline Pt in acid and alkaline solution. At low current densities (lcd), the Tafel slope was found to be close to -2.3RT/F, while at high current densities (hcd) it was found to be close to -2?2.3RT/F. It is proposed that the main path in the ORR mechanism on Pt particles was the direct four-electron process, with the transfer of the first electron as the rate determining step. If the activities are expressed through the specific current densities, a small enhancement of the catalytic activity for Pt/C was observed compared to that of polycrystalline Pt. The effect of the Pt particle size on the electrocatalysis of oxygen reduction was ascribed to the predominant (111) facets of the platinum crystallites. .


Sign in / Sign up

Export Citation Format

Share Document