Electrochemical Parameterization of Rhenium Redox Couples

1991 ◽  
Author(s):  
A. B. Lever
Keyword(s):  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yiping Zou ◽  
Tingting Liu ◽  
Qijun Du ◽  
Yingying Li ◽  
Haibo Yi ◽  
...  

AbstractElectrochemically reversible redox couples that embrace more electron transfer at a higher potential are the eternal target for energy storage batteries. Here, we report a four-electron aqueous zinc-iodine battery by activating the highly reversible I2/I+ couple (1.83 V vs. Zn/Zn2+) in addition to the typical I−/I2 couple (1.29 V). This is achieved by intensive solvation of the aqueous electrolyte to yield ICl inter-halogens and to suspend its hydrolysis. Experimental characterization and modelling reveal that limited water activity and sufficient free chloride ions in the electrolyte are crucial for the four-electron process. The merits of the electrolyte also afford to stabilize Zn anode, leading to a reliable Zn-I2 aqueous battery of 6000 cycles. Owing to high operational voltage and capacity, energy density up to 750 Wh kg−1 based on iodine mass was achieved (15–20 wt% iodine in electrode). It pushes the Zn-I2 battery to a superior level among these available aqueous batteries.


2021 ◽  
Author(s):  
M. Hegemann ◽  
P. P. Bawol ◽  
A. Köllisch-Mirbach ◽  
H. Baltruschat

AbstractIn order to advance the development of metal-air batteries and solve possible problems, it is necessary to gain a fundamental understanding of the underlying reaction mechanisms. In this study we investigate the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER, from species formed during ORR) in Na+ containing dimethyl sulfoxide (DMSO) on poly and single crystalline Pt and Au electrodes. Using a rotating ring disk electrode (RRDE) generator collector setup and additional differential electrochemical mass spectrometry (DEMS), we investigate the ORR mechanism and product distribution. We found that the formation of adsorbed Na2O2, which inhibits further oxygen reduction, is kinetically favored on Pt overadsorption on Au. Peroxide formation occurs to a smaller extent on the single crystal electrodes of Pt than on the polycrystalline surface. Utilizing two different approaches, we were able to calculate the heterogeneous rate constants of the O2/O2− redox couple on Pt and Au and found a higher rate for Pt electrodes compared to Au. We will show that on both electrodes the first electron transfer (formation of superoxide) is the rate-determining step in the reaction mechanism. Small amounts of added Li+ in the electrolyte reduce the reversibility of the O2/O2− redox couples due to faster and more efficient blocking of the electrode by peroxide. Another effect is the positive potential shift of the peroxide formation on both electrodes. The reaction rate of the peroxide formation on the Au electrode increases when increasing the Li+ content in the electrolyte, whereas it remains unaffected on the Pt electrode. However, we can show that the mixed electrolytes promote the activity of peroxide oxidation on the Pt electrode compared to a pure Li+ electrolyte. Overall, we found that the addition of Li+ leads to a Li+-dominated mechanism (ORR onset and product distribution) as soon as the Li+ concentration exceeds the oxygen concentration. Graphical abstract


2009 ◽  
Vol 2009 (8) ◽  
pp. 527-532
Author(s):  
Manindranath Bera

Two new dinuclear nickel(ll) compounds of formula [Nill2(μ-L1)2](CIO4)2·MeCN (1·MeCN) and [NiII2(μ-L2)2](CIO4)2 (2) where HL1 and HL2 stand for 3-(2-(dimethylamino)ethylimino)butan-2-one oxime and 1-(2-(dimethylamino)ethyl-imino)-1-phenylpropan-2-one oxime respectively, have been synthesised. Single crystal X-ray analyses of the complexes reveal that the nickel(ll) ions are in square-planar N3O environments and form six-membered (NiNO)2 metallacycles. Cyclic voltammetric measurements of 1·MeCN and 2 in MeCN solution show quasirreversible one-electron oxidations at E1/2 = 0.566 V and 0.603 V ( vs Fc+/Fc), respectively, attributed to NiIIINiII/NiII2 redox couples. Additional reversible NiIII2/NiIIINiII redox responses were observed at relatively higher potential near E1/2 = 0.832 V and 0.850 V ( vs Fc+/Fc), respectively, for 1·MeCN and 2. Complexes 1·MeCN and 2 display intense charge-transfer bands at ∼390 and ∼345 nm in the visible region. Chemical oxidation of complex 1·MeCN by sodium hexachloroiridate(IV) hexahydrate generates red Ni2III species with characteristic new bands at ∼520 and 427 nm in the visible region as well as the characteristic EPR signals at 77 K with g⊥ > gII. Similar phenomena were observed for complex 2 upon chemical oxidation. The dinickel(ll) complexes are catalytically active for epoxidation of olefins using iodosylbenzene as the terminal oxidant.


2016 ◽  
Vol 120 (34) ◽  
pp. 19175-19188 ◽  
Author(s):  
Jonathan Boltersdorf ◽  
Brandon Zoellner ◽  
Chris M. Fancher ◽  
Jacob L. Jones ◽  
Paul A. Maggard

Sign in / Sign up

Export Citation Format

Share Document