Electrochemical Energy Storage Devices Working in Extreme Conditions

Author(s):  
Mingzhe Chen ◽  
Yanyan Zhang ◽  
Guichuan Xing ◽  
Shulei Chou ◽  
Yunxin Tang

The energy storage systems (ESSs) revolution flourishes next-generation personal electronics, electric vehicles/hybrid electric vehicles, and stationary storage. With the rapid application of advanced ESSs, the usage of ESSs are becoming...

Author(s):  
Huan Pang ◽  
Rong Mei Zhu ◽  
Hui Yu Duan ◽  
Zhimin Zhao

Uneven energy distribution in space-time has led to an increase in the demand for energy storage devices. In recent years, aqueous energy storage systems have attracted considerable attention because of...


2016 ◽  
Vol 4 (34) ◽  
pp. 13228-13234
Author(s):  
Inho Nam ◽  
Jongseok Park ◽  
Seongjun Bae ◽  
Soomin Park ◽  
Young Geun Yoo ◽  
...  

The new energy storage technology proposed here includes an endoskeleton architecture similar to vertebrates, which (1) provides flexibility for future mobile/human integrated electrics, (2) ensures the scalability of devices for the storage of fluctuating energy sources and (3) solves safety issues associated with energy storage devices in electric vehicles.


Electric vehicles are used nowadays to reduce carbon emissions and green house gases. The main challenge in the electric vehicles is the energy storage systems. For battery operated vehicles, the increase in charging time is the major concern and range of the vehicles for a single charge is not satisfied. This leads to restrict the commercialization of electric vehicles. To overcome this, researchers and industry peoples has developed a hybrid vehicle technology which contains both electric and internal combustion engines. The efficiency of the hybrid vehicle is increased when it is incorporated with IC engines. But still the energy storage issues are censorious. Now the potential area in the energy storage systems is flow batteries. The main advantage of the flow batteries is fast charging tendency. Refuelling is possible only in case of flow batteries among all energy storage devices used in electric vehicles. This paper provides the study of flow batteries used in electric vehicles and comparison of different flow batteries for electric vehicle applications


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3230 ◽  
Author(s):  
Fernando Ortenzi ◽  
Natascia Andrenacci ◽  
Manlio Pasquali ◽  
Carlo Villante

The objective proposed by the EU to drastically reduce vehicular CO2 emission for the years up to 2030 requires an increase of propulsion systems’ efficiency, and accordingly, the improvement their technology. Hybrid electric vehicles could have a chance of achieving this, by recovering energy during braking phases, running in pure electric mode and allowing the internal combustion engine to operate under better efficiency conditions, while maintaining traditionally expected vehicle performances (mileage, weight, available on-board volume, etc.). The energy storage systems for hybrid electric vehicles (HEVs) have different requirements than those designed for Battery Electric Vehicles (BEVs); high specific power is normally the most critical issue. Using Li-ion Batteries (LiBs) in the designing of on-board Energy Storage Systems (ESS) based only on power specifications gives an ESS with an energy capacity which is sufficient for vehicle requirements. The highest specific power LiBs are therefore chosen among those technologically available. All this leads to an ESS design that is strongly stressed over time, because current output is very high and very rapidly varies, during both traction and regeneration phases. The resulting efficiency of the ESS is correspondingly lowered, and LiBs lifetime can be relevantly affected. Such a problem can be overcome by adopting hybrid storage systems, coupling LiBs and UltraCapacitors (UCs); by properly dimensioning and controlling the ESS’ components, in fact, the current output of the batteries can be reduced and smoothed, using UCs during transients. In this paper, a simulation model, calibrated and validated on an engine testbed, has been used to evaluate the performances of a hybrid storage HEV microcar under different operative conditions (driving cycles, environment temperature and ESS State of Charge). Results show that the hybridization of the powertrain may reduce fuel consumption by up to 27%, while LiBs lifetime may be more than doubled.


Sign in / Sign up

Export Citation Format

Share Document