High-performance anion exchange membrane water electrolyzers with a current density of 7.68 A cm-2 and durability of 1000 h

Author(s):  
Nanjun Chen ◽  
Sae Yane Baek ◽  
Ju Yeon Lee ◽  
Jong Hyeong Park ◽  
So Young Lee ◽  
...  

Low-cost anion exchange membrane (AEM) water electrolyzers (AEMWEs) are a new technology to produce high-purity hydrogen; however, their current density and durability are far lower than those of proton exchange...

2020 ◽  
Vol 4 (8) ◽  
pp. 4057-4066 ◽  
Author(s):  
Xueqiang Gao ◽  
HongMei Yu ◽  
Feng Xie ◽  
Jinkai Hao ◽  
Zhigang Shao

Anion exchange membrane fuel cells (AEMFCs) have attracted growing interest in recent years due to the favored electrochemical kinetics of the oxygen reduction reaction (ORR) and potential low cost, and development of high performance AEMs is always an urgent issue.


Author(s):  
Dongguo Li ◽  
Andrew R Motz ◽  
Chulsung Bae ◽  
Cy Fujimoto ◽  
Gaoqiang Yang ◽  
...  

Interest in the low-cost production of clean hydrogen is growing. Anion exchange membrane water electrolyzers (AEMWEs) are considered one of the most promising sustainable hydrogen production technologies because of their...


Author(s):  
Yoo Sei Park ◽  
Jooyoung Lee ◽  
Myeong-Je Jang ◽  
Juchan Yang ◽  
Jae Hoon Jeong ◽  
...  

Seawater electrolysis is a promising technology for the production of hydrogen energy and seawater desalination. To produce hydrogen energy through seawater electrolysis, highly active electrocatalysts for the oxygen evolution reaction...


2021 ◽  
Vol 512 ◽  
pp. 230474
Author(s):  
Nanjun Chen ◽  
Sun Pyo Kim ◽  
Chuan Hu ◽  
Ho Hyun Wang ◽  
Jong Hyeong Park ◽  
...  

RSC Advances ◽  
2017 ◽  
Vol 7 (31) ◽  
pp. 19153-19161 ◽  
Author(s):  
Xueqiang Gao ◽  
Hongmei Yu ◽  
Jia Jia ◽  
Jinkai Hao ◽  
Feng Xie ◽  
...  

The anion exchange ionomer incorporated into the electrodes of an anion exchange membrane fuel cell (AEMFC) enhances anion transport in the catalyst layer of the electrode, and thus improves performance and durability of the AEMFC.


2015 ◽  
Vol 54 ◽  
pp. 10-13 ◽  
Author(s):  
Raoudha Haddad ◽  
Jessica Thery ◽  
Bernard Gauthier-Manuel ◽  
Kamal Elouarzaki ◽  
Michael Holzinger ◽  
...  

Author(s):  
Qiucheng Xu ◽  
Jiahao Zhang ◽  
Haoxuan Zhang ◽  
Liyue Zhang ◽  
Ling Chen ◽  
...  

Alkaline water splitting, especially the anion-exchange-membrane based water electrolysis, is an attractive way for low-cost and scalable H2 production. Green electricity-driven alkaline water electrolysis is requested to develop highly-efficient electrocatalysts...


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1720
Author(s):  
Sabrina Campagna Zignani ◽  
Massimiliano Lo Faro ◽  
Stefano Trocino ◽  
Antonino Salvatore Aricò

NiFe electrodes are developed for the oxygen evolution reaction (OER) in an alkaline electrolyser based on an anion exchange membrane (AEM) separator and fed with diluted KOH solution as supporting electrolyte. This study reports on the electrochemical behaviour of two different NiFe-oxide compositions (i.e., Ni1Fe1-oxide and Ni1Fe2-oxide) prepared by the oxalate method. These catalysts are assessed for single-cell operation in an MEA including a Sustainion™ anion-exchange membrane. The electrochemical polarization shows a current density of 650 mA cm−2 at 2 V and 50 °C for the Ni1Fe1 anode composition. A durability test of 500 h is carried out using potential cycling as an accelerated stress-test. This shows a decrease in current density of 150 mA cm−2 mainly during the first 400 h. The performance achieved for the anion-exchange membrane electrolyser single-cell based on the NiFeOx catalyst appears promising. However, further improvements are required to enhance the stability under these operating conditions.


2019 ◽  
Vol 10 ◽  
pp. 281-293 ◽  
Author(s):  
Donghui Zheng ◽  
Man Li ◽  
Yongyan Li ◽  
Chunling Qin ◽  
Yichao Wang ◽  
...  

Developing a facile and environmentally friendly approach to the synthesis of nanostructured Ni(OH)2 electrodes for high-performance supercapacitor applications is a great challenge. In this work, we report an extremely simple route to prepare a Ni(OH)2 nanopetals network by immersing Ni nanofoam in water. A binder-free composite electrode, consisting of Ni(OH)2 nanopetals network, Ni nanofoam interlayer and Ni-based metallic glass matrix (Ni(OH)2/Ni-NF/MG) with sandwich structure and good flexibility, was designed and finally achieved. Microstructure and morphology of the Ni(OH)2 nanopetals were characterized. It is found that the Ni(OH)2 nanopetals interweave with each other and grow vertically on the surface of Ni nanofoam to form an “ion reservoir”, which facilitates the ion diffusion in the electrode reaction. Electrochemical measurements show that the Ni(OH)2/Ni-NF/MG electrode, after immersion in water for seven days, reveals a high volumetric capacitance of 966.4 F/cm3 at a current density of 0.5 A/cm3. The electrode immersed for five days exhibits an excellent cycling stability (83.7% of the initial capacity after 3000 cycles at a current density of 1 A/cm3). Furthermore, symmetric supercapacitor (SC) devices were assembled using ribbons immersed for seven days and showed a maximum volumetric energy density of ca. 32.7 mWh/cm3 at a power density of 0.8 W/cm3, and of 13.7 mWh/cm3 when the power density was increased to 2 W/cm3. The fully charged SC devices could light up a red LED. The work provides a new idea for the synthesis of nanostructured Ni(OH)2 by a simple approach and ultra-low cost, which largely extends the prospect of commercial application in flexible or wearable devices.


Sign in / Sign up

Export Citation Format

Share Document