Synchronous Control of Magnetic Particles and Magnetized Cells in a Tri-Axial Magnetic Field

Lab on a Chip ◽  
2021 ◽  
Author(s):  
Roozbeh Abedini-Nassab ◽  
Sajjad Bahrami

Precise manipulation of single particles is one of the main goals in the lab-on-a-chip field. Here, we present a microfluidic platform with “T” and “I” shaped magnetic tracks on the...

2018 ◽  
Vol 34 (3) ◽  
pp. 385-408 ◽  
Author(s):  
Zakaria Al-Qodah ◽  
Mohammad Al-Shannag ◽  
Mamdouh Al-Bosoul ◽  
Ivan Penchev ◽  
Hamed Al-Ahmadi ◽  
...  

Abstract This review focuses on the performance of immobilized cell bioreactors utilizing a magnetic field. These reactors utilized immobilized cells on magnetic particles or beads as the solid phase. All published research papers dealing with the performance of immobilized cell bioreactors utilizing a magnetic field from the early 1960s to the present time were considered and analyzed. It was noted that many microorganisms such as Saccharomyces cerevisiae were immobilized on different supports in these reactors. These papers used the magnetic field for several purposes, mainly for the stabilization of magnetic particles to prevent their washout from the column while operating with relatively high substrate flow rates to enhance mass transfer processes. It was observed that most publications used an axial magnetic field. In addition, most of the magnetic particles were prepared by entrapment. Some comments are presented at the end of the review which show the gaps in this promising application.


Lab on a Chip ◽  
2016 ◽  
Vol 16 (21) ◽  
pp. 4181-4188 ◽  
Author(s):  
Roozbeh Abedini-Nassab ◽  
Daniel Y. Joh ◽  
Faris Albarghouthi ◽  
Ashutosh Chilkoti ◽  
David M. Murdoch ◽  
...  

Magnetophoretic transistors switch magnetic particles and magnetically labeled cells between different paths in microfluidic channels in a tri-axial magnetic field.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 439-446
Author(s):  
Gildas Diguet ◽  
Gael Sebald ◽  
Masami Nakano ◽  
Mickaël Lallart ◽  
Jean-Yves Cavaillé

Magneto Rheological Elastomers (MREs) are composite materials based on an elastomer filled by magnetic particles. Anisotropic MRE can be easily manufactured by curing the material under homogeneous magnetic field which creates column of particles. The magnetic and elastic properties are actually coupled making these MREs suitable for energy conversion. From these remarkable properties, an energy harvesting device is considered through the application of a DC bias magnetic induction on two MREs as a metal piece is applying an AC shear strain on them. Such strain therefore changes the permeabilities of the elastomers, hence generating an AC magnetic induction which can be converted into AC electrical signal with the help of a coil. The device is simulated with a Finite Element Method software to examine the effect of the MRE parameters, the DC bias magnetic induction and applied shear strain (amplitude and frequency) on the resulting electrical signal.


Author(s):  
J. Wolowski ◽  
J. Badziak ◽  
P. Parys ◽  
E. Woryna ◽  
J. Krasa ◽  
...  

Author(s):  
Le Sun ◽  
Zhejun Luo ◽  
Jun Hang ◽  
Shichuan Ding ◽  
Wei Wang

2021 ◽  
Vol 76 (3) ◽  
pp. 265-283
Author(s):  
G. Nath

Abstract The approximate analytical solution for the propagation of gas ionizing cylindrical blast (shock) wave in a rotational axisymmetric non-ideal gas with azimuthal or axial magnetic field is investigated. The axial and azimuthal components of fluid velocity are taken into consideration and these flow variables, magnetic field in the ambient medium are assumed to be varying according to the power laws with distance from the axis of symmetry. The shock is supposed to be strong one for the ratio C 0 V s 2 ${\left(\frac{{C}_{0}}{{V}_{s}}\right)}^{2}$ to be a negligible small quantity, where C 0 is the sound velocity in undisturbed fluid and V S is the shock velocity. In the undisturbed medium the density is assumed to be constant to obtain the similarity solution. The flow variables in power series of C 0 V s 2 ${\left(\frac{{C}_{0}}{{V}_{s}}\right)}^{2}$ are expanded to obtain the approximate analytical solutions. The first order and second order approximations to the solutions are discussed with the help of power series expansion. For the first order approximation the analytical solutions are derived. In the flow-field region behind the blast wave the distribution of the flow variables in the case of first order approximation is shown in graphs. It is observed that in the flow field region the quantity J 0 increases with an increase in the value of gas non-idealness parameter or Alfven-Mach number or rotational parameter. Hence, the non-idealness of the gas and the presence of rotation or magnetic field have decaying effect on shock wave.


2021 ◽  
Vol 7 (5) ◽  
pp. 82
Author(s):  
River Gassen ◽  
Dennis Thompkins ◽  
Austin Routt ◽  
Philippe Jones ◽  
Meghan Smith ◽  
...  

Magnetic particles have been evaluated for their biomedical applications as a drug delivery system to treat asthma and other lung diseases. In this study, ferromagnetic barium hexaferrite (BaFe12O19) and iron oxide (Fe3O4) particles were suspended in water or glycerol, as glycerol can be 1000 times more viscous than water. The particle concentration was 2.50 mg/mL for BaFe12O19 particle clusters and 1.00 mg/mL for Fe3O4 particle clusters. The magnetic particle cluster cross-sectional area ranged from 15 to 1000 μμm2, and the particle cluster diameter ranged from 5 to 45 μμm. The magnetic particle clusters were exposed to oscillating or rotating magnetic fields and imaged with an optical microscope. The oscillation frequency of the applied magnetic fields, which was created by homemade wire spools inserted into an optical microscope, ranged from 10 to 180 Hz. The magnetic field magnitudes varied from 0.25 to 9 mT. The minimum magnetic field required for particle cluster rotation or oscillation in glycerol was experimentally measured at different frequencies. The results are in qualitative agreement with a simplified model for single-domain magnetic particles, with an average deviation from the model of 1.7 ± 1.3. The observed difference may be accounted for by the fact that our simplified model does not include effects on particle cluster motion caused by randomly oriented domains in multi-domain magnetic particle clusters, irregular particle cluster size, or magnetic anisotropy, among other effects.


2020 ◽  
Vol 65 (1) ◽  
pp. 95-104
Author(s):  
H. Wu ◽  
Y. L. Chang ◽  
Alexandr Babkin ◽  
Boyoung Lee

Sign in / Sign up

Export Citation Format

Share Document