Preparation of micron-scale Cu@Ag conductive particles by displacement coating to reinforce epoxy conductive adhesives

2021 ◽  
Author(s):  
Zhi Sun ◽  
Feng Chen ◽  
Na Cheng ◽  
Xinli Lou ◽  
Xiayan Tong ◽  
...  

The epoxy resin conductive adhesives with high electrical conductivity were prepared by adding a simple coating of well-dispersed micron-scale silver-coated copper(Cu@Ag)particles. The Cu@Ag particles were prepared by displacement coating using...

2007 ◽  
Vol 353-358 ◽  
pp. 2879-2882 ◽  
Author(s):  
Qing Hua Li ◽  
Jian Hua Zhang

Isotropic Conductive Adhesives (ICAs) were prepared using epoxy resin as matrix, latent curing agent as hardener, and silver particles as the conducting filler. The effects of nano-fillers (SiO2 nano-particles and carbon nanotubes) on the conductivity, adhension strength and reliability of ICAs were investigated experimentally in this paper. The results showed that these two nano fillers can improve both the conductivity and adhesion strength of ICAs, which maybe attributed to the nano-particles forming physico-chemical bonds with epoxy resin. These physico-chemical bonds increase the contact area and then minish the interspace of Ag particles, so it reduces electrical resistance and enables a high current flow. And the increasing contact area will improve the contact strength between Ag particles and epoxy resin. Under the reliability testing with the high temperature and high humidity (85°C/85RH), the SiO2 nano-particles can improve the reliability of ICAs apparently, while carbon nanotubes can not. This is because insulating material can prevent silver migration.


Alloy Digest ◽  
1988 ◽  
Vol 37 (1) ◽  

Abstract CDA C18700 is a copper-base alloy containing lead (nominally 1.0%). The lead is added to impart free-cutting properties to the metal. Although the lead lowers the electrical conductivity of CDA C18700 slightly below that of tough-pitch copper, it still has high electrical conductivity well within the limits needed for most current-carrying requirements. Typical uses comprise electrical motor and switch parts, electrical connectors and screw-machine parts requiring high conductivity. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-533. Producer or source: Copper and copper alloy mills.


Alloy Digest ◽  
1975 ◽  
Vol 24 (12) ◽  

Abstract Copper Alloy NO. 182 is an age-hardening type of alloy that combines relatively high electrical conductivity with good strength and hardness. It was formerly known as Chromium Copper and its applications include such uses as resistance-welding-machine electrodes, switch contacts and cable connectors. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and shear strength as well as fracture toughness and fatigue. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-305. Producer or source: Copper and copper alloy mills.


Alloy Digest ◽  
1977 ◽  
Vol 26 (5) ◽  

Abstract Copper Alloy No. 815 is an age-hardenable cast copper-chromium alloy. It is characterized by high electrical and thermal conductivities combined with medium hardness and strength in the age-hardened condition. It is used for components requiring high electrical conductivity or high thermal conductivity. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Cu-332. Producer or source: Copper alloy foundries.


Alloy Digest ◽  
2008 ◽  
Vol 57 (10) ◽  

Abstract Swissmetal alloys C97 and C98 attain high strength by aging after cold working. The alloys are free machining and maintain a high electrical conductivity. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: CU-759. Producer or source: Avins Industrial Products.


Alloy Digest ◽  
2001 ◽  
Vol 50 (6) ◽  

Abstract Swissmetal SM453C is a free-machining copper alloy with high electrical conductivity. It is recommended for male contacts in electrical and electronic applications. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: CU-668. Producer or source: Swissmetal Metalworks Ltd, Plant Boillat.


Alloy Digest ◽  
1988 ◽  
Vol 37 (3) ◽  

Abstract UNS NO. A96101 in the heat treated condition is used primarily for enclosed bus conductor where both high strength and high electrical conductivity are desirable. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Al-287. Producer or source: Various aluminum companies.


Sign in / Sign up

Export Citation Format

Share Document